shoi2012 回家的路
输入数据
5 4
1 2
2 2
2 5
3 5
1 1
5 5
输出数据
19
从5号点出发,走到1,代价为2
1换乘,走到7,代价为1
7走到8,代价为2
8换乘,走到2,代价为1
2走到3,代价为6
3换乘走到9,代价为1
9走到10,代价为2
10走到12,代价为4
12走到6,代价为0
总代价为2+1+2+1+6+1+2+4=19
#include <bits/stdc++.h> using namespace std; typedef long long LL; template <class T> inline void read(T &x) { x = 0; char c = getchar(); bool f = 0; for (; !isdigit(c); c = getchar()) f ^= c == '-'; for (; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48); x = f ? -x : x; } template <class T> inline void write(T x) { if (x < 0) { putchar('-'); x = -x; } T y = 1; int len = 1; for (; y <= x / 10; y *= 10) ++len; for (; len; --len, x %= y, y /= 10) putchar(x / y + 48); } const int MAXN = 3e5, MAXM = 3e6; int n, m, s, t, tot, head[MAXN + 5], dis[MAXN + 5]; bool vis[MAXN + 5]; struct Station { int x, y, id; } a[MAXN + 5]; struct Edge { int next, to, dis; } e[MAXM + 5]; struct Node { int val, id; inline friend bool operator<(Node x, Node y) { return x.val > y.val; } }; inline void addEdge(int u, int v, int w) { e[++tot] = (Edge) { head[u], v, w }; head[u] = tot; } inline bool cmpx(Station a, Station b) {//按横坐标排序 return a.x == b.x ? a.y < b.y : a.x < b.x; } inline bool cmpy(Station a, Station b) {//按纵坐标排序 return a.y == b.y ? a.x < b.x : a.y < b.y; } inline void dijkstra(int s) {//堆优化 dijkstra priority_queue<Node> q; memset(dis, 0x3f, sizeof (dis)); dis[s] = 0; q.push((Node) { 0, s }); for (; !q.empty(); ) { int u = q.top().id; q.pop(); if (vis[u]) continue; vis[u] = 1; for (int v, w, i = head[u]; v = e[i].to, w = e[i].dis, i; i = e[i].next) if (dis[v] > dis[u] + w) { dis[v] = dis[u] + w; if (!vis[v]) q.push((Node) { dis[v], v }); } } } int main() { read(n); //N代表矩形大小 read(m); //M个中转点 n = m + 2;//加上起点与终点,共N个特殊点 s = n - 1, t = n;//起点 和 终点 for (int i = 1; i <= n; ++i) { read(a[i].x); read(a[i].y); a[i].id = i;//点的编号 } sort(a + 1, a + n + 1, cmpx); for (int i = 1; i < n; ++i) //对于所有的点(出发点,结束点,中转站) if (a[i].x == a[i + 1].x) { addEdge(a[i].id, a[i + 1].id, (a[i + 1].y - a[i].y) << 1); addEdge(a[i + 1].id, a[i].id, (a[i + 1].y - a[i].y) << 1); } //第一层:横向边 sort(a + 1, a + n + 1, cmpy); for (int i = 1; i < n; ++i) if (a[i].y == a[i + 1].y) { addEdge(a[i].id + n, a[i + 1].id + n, (a[i + 1].x - a[i].x) << 1); addEdge(a[i + 1].id + n, a[i].id + n, (a[i + 1].x - a[i].x) << 1); } //第二层:纵向边 for (int i = 1; i <= n - 2; ++i) //对于每个换乘站,自己向自己的一个"分身“进行连边,代价为1 //也就是说如果从前是横向移动的话,移动一个换乘站,花上一个代价,就可以纵向移动了 //反之亦然 addEdge(i, i + n, 1), addEdge(i + n, i, 1); //两层之间:改变方向用时 1 addEdge(s, s + n, 0); addEdge(s + n, s, 0); addEdge(t, t + n, 0); addEdge(t + n, t, 0);//起点和终点改变方向不需要时间 dijkstra(s);//求 s -> t 最短路 write(dis[t] == 0x3f3f3f3f ? -1 : dis[t]);//判断是否有解 putchar('\n'); return 0; }