关于SIFT,GIFT在旋转不变性上的对比实验

关于SIFT,GIFT在旋转不变性上的对比实验

这篇文章不讨论SIFTGIFT的实现原理,只从最终匹配结果的准确度上来进行对比。

回顾

先简单回顾一下,两种方法略有不同。SIFT是检测出各个特征点,并得到特征点描述子。

GIFT是先使用其它算法(SIFT,SuperPoint,Harris)等方法得到特征点,然后将原图加检测得到的特征点输入网络得到特征点描述子。

用特征点描述子进行匹配,我们可以得到如下的试验结果:

原图1 原图2 GIFT SIFT
yibao yibao2 image-20220417163229487 image-20220417163534344
book1 book2_cr image-20220417153112479 image-20220417152953546

准确率测试

但是仔细观察GIFT的匹配结果,肉眼就能看出很多错误的匹配。(SIFT,GIFT都使用的是FLANN)

对此,我设计了一个方法来估算一下二者匹配的准确率,也能侧面反映出描述子的健壮性。

思路:一张图片\(img\),将其旋转90°,得到\(img_{}'\),然后分别使用SIFT,GIFT进行特征点匹配,由于\(ima\)\(ima_{}'\)的像素点存在一个旋转矩阵的对应关系,我们可以据此来大体估算两种方法的准确率。

实验环境:pycharm, cpu, opencv

  • Test1
image-20220417165535340 build_ro

我们看一下在这两张图片上的匹配结果:

SIFT SIFT points+GIFT SuperPoint points+GIFT
特征点匹配数目 5184 1506 630
正确匹配数目 5038 876 358
准确率 0.9718 0.5817 0.5682

特征点匹配对应的就是附录代码里的good_mathes,正确匹配数目是使用两张图片的旋转矩阵计算而来,也就是,\(img\)里的一个特征点坐标\(p\),对应\(img_{}'\)里的\(p_{}'\), 有$p_{}' = Mp $。详情请查看附录代码。

  • Test2

    woman image-20220417174149935 woman_ro
SIFT SIFT points+GIFT SuperPoint points+GIFT
特征点匹配数目 594 256 216
正确匹配数目 587 155 127
准确率 0.9882 0.6055 0.5880

总结

虽然GIFT具有一定的旋转不变性,但是效果不是很好,使用特征描述子匹配出的错点比较多,特征描述子的健壮性也不如SIFT通用。

最后要说的是,受限于笔者目前的知识水平和技术水平,不排除在复现GIFT原代码时出现概念性错误,或者是由于粗心导致的细节疏忽。所以此篇文章仅供参考,如果您有新的想法或者建议,欢迎在评论区指出或者发送邮件(lightwxz@foxmail.com)讨论。实验代码请看附录。

核心代码

GIFT_Test.py 代码修改自GIFT论文作者在GitHub发布的demo.ipynb

备注:

  • 复现此代码时需要修改test_acc下的M矩阵,因为实验所用的旋转变更了坐标系,因此每张图片的旋转矩阵都是不同的

GIFT_Test.py

import numpy as np
import torch
from skimage.io import imread
from network.wrapper import GIFTDescriptor
from train.evaluation import EvaluationWrapper, Matcher
from utils.superpoint_utils import SuperPointWrapper, SuperPointDescriptor
import matplotlib.pyplot as plt
import cv2

MIN_MATCH_COUNT = 10


def test_acc(good, kps0, kps1):

    # 给特征点末尾添加一列变为其次坐标
    points1 = np.insert(kps0, 2, values=np.ones(kps0.shape[0]), axis=1)
    points2 = np.insert(kps1, 2, values=np.ones(kps1.shape[0]), axis=1)

    # 旋转矩阵
    M = np.array([[0, -1, 528],
                  [1, 0, 0],
                  [0, 0, 1]], dtype=np.float32)
    # 图一是图二旋转 90°得到,因此像素坐标乘以一个旋转矩阵即可

    count = 0
    for i in good:
        pts_after_rotate = M.dot(points1[i.queryIdx].T)
        if (pts_after_rotate - points2[i.trainIdx]).sum() < 3:
            count += 1

    print(len(good))
    print(count)


if __name__ == '__main__':

    detector = SuperPointWrapper(EvaluationWrapper.load_cfg('configs/eval/superpoint_det.yaml'))
    gift_desc = GIFTDescriptor(EvaluationWrapper.load_cfg('configs/eval/gift_pretrain_desc.yaml'))
    superpoint_desc = SuperPointDescriptor(EvaluationWrapper.load_cfg('configs/eval/superpoint_desc.yaml'))
    # matcher = Matcher(EvaluationWrapper.load_cfg('configs/eval/match_v0.yaml'))


    img0 = imread("demo/woman.jpg")
    img1 = imread("demo/woman_ro.jpg")


    # 此处可以通过修改注释来切换检测器
    
    # to use superpoint detector
    # kps0, _ = detector(img0)
    # kps1, _ = detector(img1)


    # to use SIFT detector
    sift = cv2.SIFT_create()
    kps0, _ = sift.detectAndCompute(img0, None)
    kps1, _ = sift.detectAndCompute(img1, None)

    kps0 = np.array([[i.pt[0], i.pt[1]] for i in kps0])
    kps1 = np.array([[i.pt[0], i.pt[1]] for i in kps1])
    # -----------------------

	
    # 得到GIFT特征描述子
    des1 = gift_desc(img0, kps0)
    des2 = gift_desc(img1, kps1)

	
    #描述子匹配
    FLANN_INDEX_KDTREE = 0
    index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
    search_params = dict(checks=50)
    flann = cv2.FlannBasedMatcher(index_params, search_params)
    matches1 = flann.knnMatch(des1, des2, k=2)
    # matches2 = flann.knnMatch(des2, des1, k=1)

    ratio_thresh = 0.98 # 此处设置为0.7,0.8时就一个都匹配不上了。
    good_matches = []
    for m, n in matches1:
        if m.distance < ratio_thresh * n.distance:
            good_matches.append(m)

    test_acc(good_matches, kps0, kps1)

	
    
    kps0 = [cv2.KeyPoint(kps0[i][0], kps0[i][1], 1)
                for i in range(kps0.shape[0])]
    kps1 = [cv2.KeyPoint(kps1[i][0], kps1[i][1], 1)
                     for i in range(kps1.shape[0])]

    img_matches = np.empty(
        (max(img0.shape[0], img1.shape[0]), img0.shape[1] + img1.shape[1], 3),
        dtype=np.uint8)

    cv2.drawMatches(img0, kps0, img1, kps1, good_matches, img_matches,
                    flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)

    cv2.namedWindow("Good Matches of GIFT", 0)
    cv2.resizeWindow("Good Matches of GIFT", 1024, 1024)
    cv2.imshow('Good Matches of GIFT', img_matches)
    cv2.waitKey()

SIFT_Test.py

from __future__ import print_function
import cv2 as cv
import numpy as np


pic1 = "data/woman.jpg"
pic2 = "data/woman_ro.jpg"


def test_acc(good, kps0, kps1):

    count = 0
    # 给特征点末尾添加一列变为其次坐标
    points1 = np.insert(kps0, 2, values=np.ones(kps0.shape[0]), axis=1)
    points2 = np.insert(kps1, 2, values=np.ones(kps1.shape[0]), axis=1)

    # 旋转矩阵
    M = np.array([[0, -1, 528],
                  [1, 0, 0],
                  [0, 0, 1]], dtype=np.float32)
    # 图一是图二旋转 90°得到,因此像素坐标乘以一个旋转矩阵即可

    count = 0
    for i in good:
        pts_after_rotate = M.dot(points1[i.queryIdx].T)
        if (pts_after_rotate-points2[i.trainIdx]).sum() < 3:
            count += 1
    print(len(good))
    print(count)



img_object = cv.imread(pic1)
img_scene = cv.imread(pic2)
if img_object is None or img_scene is None:
    print('Could not open or find the images!')
    exit(0)

#-- Step 1: Detect the keypoints using SURF Detector, compute the descriptors
sift = cv.SIFT_create()

keypoints_obj, descriptors_obj = sift.detectAndCompute(img_object,None)
keypoints_scene, descriptors_scene = sift.detectAndCompute(img_scene,None)

#-- Step 2: Matching descriptor vectors with a FLANN based matcher
# Since SURF is a floating-point descriptor NORM_L2 is used
matcher = cv.DescriptorMatcher_create(cv.DescriptorMatcher_FLANNBASED)
knn_matches = matcher.knnMatch(descriptors_obj, descriptors_scene, 2)

#-- Filter matches using the Lowe's ratio test
ratio_thresh = 0.75
good_matches = []
for m,n in knn_matches:
    if m.distance < ratio_thresh * n.distance:
        good_matches.append(m)

print("The number of keypoints in image1 is", len(keypoints_obj))
print("The number of keypoints in image2 is", len(keypoints_scene))

#
kp1 = np.array([[i.pt[0], i.pt[1]] for i in keypoints_obj], dtype=np.int32)
kp2 = np.array([[i.pt[0], i.pt[1]] for i in keypoints_scene], dtype=np.int32)

test_acc(good_matches, kp1, kp2)

#-- Draw matches
img_matches = np.empty((max(img_object.shape[0], img_scene.shape[0]), img_object.shape[1]+img_scene.shape[1], 3), dtype=np.uint8)
cv.drawMatches(img_object, keypoints_obj, img_scene, keypoints_scene, good_matches, img_matches, flags=cv.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)

cv.namedWindow("Good Matches of SIFT", 0)
cv.resizeWindow("Good Matches of SIFT", 1024, 1024)
cv.imshow('Good Matches of SIFT', img_matches)
cv.waitKey()
posted @ 2022-04-17 18:04  CuriosityWang  阅读(311)  评论(0编辑  收藏  举报