使用sklearn之LabelEncoder将Label标准化
LabelEncoder可以将标签分配一个0—n_classes-1之间的编码
将各种标签分配一个可数的连续编号
将DataFrame中的每一行ID标签分别转换成连续编号:
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline
class MultiColumnLabelEncoder:
def __init__(self,columns = None):
self.columns = columns # array of column names to encode
def fit(self,X,y=None):
return self # not relevant here
def transform(self,X):
'''
Transforms columns of X specified in self.columns using
LabelEncoder(). If no columns specified, transforms all
columns in X.
'''
output = X.copy()
if self.columns is not None:
for col in self.columns:
output[col] = LabelEncoder().fit_transform(output[col])
else:
for colname,col in output.iteritems():
output[colname] = LabelEncoder().fit_transform(col)
return output
def fit_transform(self,X,y=None):
return self.fit(X,y).transform(X)
fruit_data[['fruit','color']]=fruit_data[['fruit','color']].apply(LabelEncoder().fit_transform)