Notice that the number 123456789 is a 9-digit number consisting exactly the numbers from 1 to 9, with no duplication. Double it we will obtain 246913578, which happens to be another 9-digit number consisting exactly the numbers from 1 to 9, only in a different permutation. Check to see the result if we double it again!
Now you are suppose to check if there are more numbers with this property. That is, double a given number with k digits, you are to tell if the resulting number consists of only a permutation of the digits in the original number.
Input Specification:
Each input contains one test case. Each case contains one positive integer with no more than 20 digits.
Output Specification:
For each test case, first print in a line "Yes" if doubling the input number gives a number that consists of only a permutation of the digits in the original number, or "No" if not. Then in the next line, print the doubled number.
Sample Input:
1234567899
Sample Output:
Yes
2469135798
#include<bits/stdc++.h> using namespace std; typedef long long ll; #define maxnum 100005 int a[30] = {0}; int count1[10] = {0}; //分别对倍乘前后的位计数 int count2[10] = {0}; int main(){ string s; cin >> s; int len = s.size(); for(int i=0;i < s.size();i++){ a[i] = s[i]-'0'; } for(int i=0;i < len;i++){ count1[a[i]]++; } for(int i=0;i < len/2;i++){ //翻转 swap(a[i],a[len-i-1]); } int jinwei = 0; //倍乘 for(int i=0;i <= len;i++){ int num = a[i]*2 + jinwei; a[i] = num%10; jinwei = (num)/10; } // for(auto num:a) cout << num << " "; int pos = 0; for(int i=30;i >= 0;i--){ if(a[i]){pos = i;break;} } for(int i=0;i <= pos;i++){ count2[a[i]]++; } int flag = 1; for(int i=0;i < 10;i++){ if(count1[i] != count2[i])flag = 0; } if(flag) cout << "Yes" << endl; else cout << "No" << endl; for(int i=pos;i >= 0;i--){ cout << a[i]; } return 0; }
_