爨爨爨好

  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

▶ 纹理内存访问补充(见纹理内存博客 http://www.cnblogs.com/cuancuancuanhao/p/7809713.html)

▶ 计算能力

● 不同计算能力的硬件对计算特性的支持。

  

● 不同计算能力的硬件技术特性(重要)。

  

● 浮点运算技术标准描述(原文)

■ All compute devices follow the IEEE 754-2008 standard for binary floating-point arithmetic with the following deviations:

  There is no dynamically configurable rounding mode; however, most of the operations support multiple IEEE rounding modes, exposed via device intrinsics;

  There is no mechanism for detecting that a floating-point exception has occurred and all operations behave as if the IEEE-754 exceptions are always masked, and deliver the masked response as defined by IEEE-754 if there is an exceptional event; for the same reason, while SNaN encodings are supported, they are not signaling and are handled as quiet;

  The result of a single-precision floating-point operation involving one or more input NaNs is the quiet NaN of bit pattern 0x7fffffff;

  Double-precision floating-point absolute value and negation are not compliant with IEEE-754 with respect to NaNs; these are passed through unchanged;

Code must be compiled with -ftz=false, -prec-div=true, and -prec-sqrt=true to ensure IEEE compliance (this is the default setting; see the nvcc user manual for description of these compilation flags).

Regardless of the setting of the compiler flag -ftz,

    Atomic single-precision floating-point adds on global memory always operate in flush-to-zero mode, i.e., behave equivalent to FADD.F32.FTZ.RN,
    Atomic single-precision floating-point adds on shared memory always operate with denormal support, i.e., behave equivalent to FADD.F32.RN.

■ IEEE-754R 标准,CUDA 设备上函数 fminf(),fmin(),fmaxf(),fmax() 在有且仅有一个参数为NaN时,返回值将是另一个参数。

■ 浮点数转化为整数,且超出整形格式边界时,IEEE-754 称为未定义,而 CUDA 设备将该数映射到整形格式边界(改格式能表示的最大或最小的数)。

■ 整数除以零或整数溢出时,IEEE-754 称为未定义,而 CUDA 设备将抛出一个非特定的值。

 

● 各代 CC 设备的新特性介绍

■ 调整共享内存和 L1 缓存的平衡

 1 // driver_types.h
 2 enum __device_builtin__ cudaFuncCache
 3 {
 4     cudaFuncCachePreferNone = 0,    // 默认缓存模式
 5     cudaFuncCachePreferShared = 1,  // 扩大共享内存缩小 L1 缓存
 6     cudaFuncCachePreferL1 = 2,      // 扩大 L1 缓存缩小共享内存
 7     cudaFuncCachePreferEqual = 3    // 等量大小的共享内存和 L1 缓存
 8 };
 9 
10 // cuda_runtime_api.h
11 extern __host__ cudaError_t CUDARTAPI cudaDeviceSetCacheConfig(enum cudaFuncCache cacheConfig);

 

posted on 2018-05-08 16:49  爨爨爨好  阅读(431)  评论(0编辑  收藏  举报