爨爨爨好

  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

展示了三种不同的GPU一维卷积方法,分别为简单(全局内存)卷积,含光环元素的共享内存方法,不含光环元素的共享内存方法。并且改进了CPU的一维卷积方案(不需要分边界情况单独处理)。

  1 #include <stdio.h>
  2 #include <stdlib.h>
  3 #include <windows.h>
  4 #include <time.h>
  5 #include <math.h>
  6 #include "cuda_runtime.h"
  7 #include "device_launch_parameters.h"
  8 
  9 #define ARRAY_SIZE      (1024*73+27)
 10 #define MASK_SIZE       7   //奇数
 11 #define WIDTH           64
 12 #define SEED            1   //(unsigned int)clock()    
 13 #define MIN(x,y)        ((x)<(y)?(x):(y))
 14 #define CEIL(x,y)       (int)(( x - 1 ) /  y + 1)
 15 
 16 typedef int format;    // int or float
 17 
 18 __constant__ format d_mask[MASK_SIZE];
 19 
 20 void checkCudaError(cudaError input)
 21 {
 22     if (input != cudaSuccess)
 23     {
 24         printf("\n\tfind a cudaError!");
 25         exit(1);
 26     }
 27     return;
 28 }
 29 
 30 int checkResult(format * in1, format * in2, const int length)
 31 {
 32     for (int i = 0; i < length; i++)
 33     {
 34         if (in1[i] != in2[i])
 35             return i;
 36     }
 37     return 0;
 38 }
 39 
 40 void convolutionCPU(const format *in, const format *mask, format *out, const int array_size, const int mask_size)
 41 {
 42     for (int i = 0; i < array_size; i++)// 外层循环针对数组元素
 43     {
 44         out[i] = 0;
 45         for (int j = -MIN(mask_size / 2, i); j <= MIN(mask_size / 2, array_size - 1 - i); j++)// 魔改的判断条件,不需要分边界情况讨论
 46             out[i] += in[i + j] * mask[mask_size / 2 + j];
 47     }
 48     return;
 49 }
 50 
 51 __global__ void convolutionGPU1(const format *in, format *out, const int array_size, const int mask_size)
 52 {
 53     int id = blockIdx.x * blockDim.x + threadIdx.x;
 54     if (id < array_size)
 55     {
 56         format sum = 0;
 57         for (int j = 0; j < mask_size; j++)// 循环针对蒙版元素
 58             sum += (id - mask_size / 2 + j >= 0 && id - mask_size / 2 + j < array_size) ? in[id - mask_size / 2 + j] * d_mask[j] : 0;
 59         out[id] = sum;
 60     }
 61     return;
 62 }
 63 
 64 __global__ void convolutionGPU2(const format *in, format *out, const int array_size, const int mask_size)
 65 {
 66     extern __shared__ format share_in[];// 指定共享内存包括两端的光环元素
 67     int id = blockIdx.x * blockDim.x + threadIdx.x;
 68     if (id < array_size)
 69     {
 70         format sum = 0;
 71 
 72         // 用前 mask_size / 2 个线程来填充前 mask_size / 2 个光环元素,保证顺序相同,提高全局内存访问效率
 73         if (threadIdx.x <mask_size / 2)
 74             share_in[threadIdx.x] = (id - mask_size / 2 >= 0) ? in[id - mask_size / 2] : 0;
 75         
 76         share_in[mask_size / 2 + threadIdx.x] = in[blockIdx.x * blockDim.x + threadIdx.x];//中间部分下标用 mask_size / 2 垫起
 77 
 78         // 用后 mask_size / 2 个线程来填充后 mask_size / 2 个光环元素
 79         if (threadIdx.x >= blockDim.x - mask_size / 2)
 80             share_in[mask_size / 2 + blockDim.x + threadIdx.x] = (id + mask_size / 2 < array_size) ? in[id + mask_size / 2] : 0;
 81         __syncthreads();
 82 
 83         for (int j = 0; j < mask_size; j++)// 卷积,循环针对蒙版元素
 84             sum += share_in[threadIdx.x + j] * d_mask[j];
 85         out[id] = sum;
 86     }
 87     return;
 88 }
 89 
 90 __global__ void convolutionGPU3(const format *in, format *out, const int array_size, const int mask_size)
 91 {
 92     extern __shared__ format share_in[];// 指定共享内存不包括两端的光环元素
 93     int id = blockIdx.x * blockDim.x + threadIdx.x;
 94     if (id < array_size)
 95     {
 96         int in_j, j;// in_j 为本线程中涉及卷积的原数组的第j个元素的下标
 97         format sum = 0;
 98 
 99         share_in[threadIdx.x] = in[id];
100         __syncthreads();
101 
102         for (j = 0; j < mask_size; j++)
103         {
104             in_j = id - mask_size / 2 + j;
105             if (in_j >= 0 && in_j < array_size)
106                 sum += (in_j >= blockIdx.x*blockDim.x && in_j < (blockIdx.x + 1)*blockDim.x) ?
107                 share_in[threadIdx.x + j - mask_size / 2] * d_mask[j] : sum += in[in_j] * d_mask[j];
108         }
109     }
110     return;
111 }
112 
113 int main()
114 {
115     int i;
116     format h_in[ARRAY_SIZE], h_mask[MASK_SIZE], cpu_out[ARRAY_SIZE],gpu_out[ARRAY_SIZE];
117     format *d_in, *d_out;
118     clock_t time;
119     cudaEvent_t start, stop;
120     float elapsedTime1, elapsedTime2, elapsedTime3;
121     cudaEventCreate(&start);
122     cudaEventCreate(&stop);
123     
124     checkCudaError(cudaMalloc((void **)&d_in, sizeof(format) * ARRAY_SIZE));
125     checkCudaError(cudaMalloc((void **)&d_mask, sizeof(format) * MASK_SIZE));
126     checkCudaError(cudaMalloc((void **)&d_out, sizeof(format) * ARRAY_SIZE));
127 
128     srand(SEED);
129     for (i = 0; i < ARRAY_SIZE; i++)
130         h_in[i] = (rand() - RAND_MAX / 2);
131     for (i = 0; i < MASK_SIZE; i++)
132         h_mask[i] = 1;
133     
134     time = clock();
135     convolutionCPU(h_in, h_mask, cpu_out, ARRAY_SIZE, MASK_SIZE);
136     time = clock() - time;
137 
138     cudaMemcpy(d_in, h_in, sizeof(format) * ARRAY_SIZE, cudaMemcpyHostToDevice);
139     cudaMemcpyToSymbol(d_mask, h_mask, sizeof(format) * MASK_SIZE);
140 
141     cudaMemset(d_out, 0, sizeof(format) * ARRAY_SIZE);
142     cudaEventRecord(start, 0);
143     convolutionGPU1 << < CEIL(ARRAY_SIZE, WIDTH), WIDTH >> > (d_in, d_out, ARRAY_SIZE, MASK_SIZE);
144     cudaMemcpy(gpu_out, d_out, sizeof(format) * ARRAY_SIZE, cudaMemcpyDeviceToHost);
145     cudaDeviceSynchronize();
146     cudaEventRecord(stop, 0);
147     cudaEventSynchronize(stop);
148     cudaEventElapsedTime(&elapsedTime1, start, stop);
149     if (i = checkResult(cpu_out, gpu_out, ARRAY_SIZE))
150         printf("\n\tCompute error at i = %d\n\tcpu_out[i] = %10d, gpu_out[i] = %10d\n", i, cpu_out[i], gpu_out[i]);
151     else
152         printf("\n\tGPU1 Compute correctly!\n");
153     
154     cudaMemset(d_out, 0, sizeof(format) * ARRAY_SIZE);
155     cudaEventRecord(start, 0);
156     convolutionGPU2 << < CEIL(ARRAY_SIZE, WIDTH), WIDTH, sizeof(format) * (WIDTH + MASK_SIZE - 1) >> > (d_in, d_out, ARRAY_SIZE, MASK_SIZE);
157     cudaMemcpy(gpu_out, d_out, sizeof(format) * ARRAY_SIZE, cudaMemcpyDeviceToHost);
158     cudaDeviceSynchronize();
159     cudaEventRecord(stop, 0);
160     cudaEventSynchronize(stop);
161     cudaEventElapsedTime(&elapsedTime2, start, stop);
162     if (i = checkResult(cpu_out, gpu_out, ARRAY_SIZE))
163         printf("\n\tCompute error at i = %d\n\tcpu_out[i] = %10d, gpu_out[i] = %10d\n", i, cpu_out[i], gpu_out[i]);
164     else
165         printf("\n\tGPU2 Compute correctly!\n");
166 
167     cudaMemset(d_out, 0, sizeof(format) * ARRAY_SIZE);
168     cudaEventRecord(start, 0);
169     convolutionGPU3 << < CEIL(ARRAY_SIZE, WIDTH), WIDTH, sizeof(format) * WIDTH >> > (d_in, d_out, ARRAY_SIZE, MASK_SIZE);
170     cudaMemcpy(gpu_out, d_out, sizeof(format) * ARRAY_SIZE, cudaMemcpyDeviceToHost);
171     cudaDeviceSynchronize();
172     cudaEventRecord(stop, 0);
173     cudaEventSynchronize(stop);
174     cudaEventElapsedTime(&elapsedTime3, start, stop);
175     if (i = checkResult(cpu_out, gpu_out, ARRAY_SIZE))
176         printf("\n\tCompute error at i = %d\n\tcpu_out[i] = %10d, gpu_out[i] = %10d\n", i, cpu_out[i], gpu_out[i]);
177     else
178         printf("\n\tGPU3 Compute correctly!\n");
179   
180     printf("\n\tSpending time:\n\tCPU:\t%10ld ms\
181         \n\tGPU1:\t%10.2f ms\n\tGPU2:\t%10.2f ms\n\tGPU3:\t%10.2f ms\n",
182         time, elapsedTime1, elapsedTime2, elapsedTime3);
183 
184     cudaFree(d_in);
185     cudaFree(d_mask);
186     cudaFree(d_out);
187     cudaEventDestroy(start);
188     cudaEventDestroy(stop);
189     getchar();
190     return 0;
191 }

 

▶ 输出结果如下图,计时部分有点问题(如何使用同一个 cudaEvent _t start, stop 对多个事件进行计时?),三种方法计算结果均正确,等待及时问题解决再来对比测评。

 

posted on 2017-10-14 15:06  爨爨爨好  阅读(587)  评论(0编辑  收藏  举报