爨爨爨好

  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

▶ 直接的矩阵加法,没有优化

  1 #include <stdio.h>
  2 #include <stdlib.h>
  3 #include <malloc.h>
  4 #include <time.h>
  5 #include "cuda_runtime.h"
  6 #include "device_launch_parameters.h"
  7 
  8 #define WIDTH       (1024*1+19)
  9 #define HEIGHT      (1024*1+17)
 10 #define THREAD_SIZE 16
 11 #define BLOCK_SIZE  256
 12 #define DIMENSION   1   //使用指定维数的跳转
 13 #define SEED        1   //(unsigned int)time(MULL)
 14 
 15 void checkNULL(void *input)
 16 {
 17     if (input == NULL)
 18     {
 19         printf("\n\tfind a NULL!");
 20         exit(1);
 21     }
 22     return;
 23 }
 24 
 25 void checkCudaError(cudaError input)
 26 {
 27     if (input != cudaSuccess)
 28     {
 29         printf("\n\tfind a cudaError!");
 30         exit(1);
 31     }
 32     return;
 33 }
 34 
 35 int checkResult(float * in1, float * in2, const int length)
 36 // 注意返回值为0(两向量相等)或者“值不等的元素下标加一”(防止0号元素就不相等),返回后若想使用该下标则需要减1
 37 {
 38     int i;
 39     for (i = 0; i < length; i++)
 40     {
 41         if (in1[i] != in2[i])
 42             return i + 1;
 43     }
 44     return 0;
 45 }
 46 
 47 // 采用一维跳转
 48 __global__ void add1(const float *a, const float *b, float *c)
 49 {
 50     int id = blockIdx.x * blockDim.x + threadIdx.x;
 51 
 52     while (id < WIDTH * HEIGHT)
 53     {
 54         c[id] = a[id] + b[id];
 55         id += gridDim.x*blockDim.x;
 56     }
 57     return;
 58 }
 59 
 60 // 采用二维跳转
 61 __global__ void add2(const float *a, const float *b, float *c)
 62 {
 63     int idx = blockIdx.x * blockDim.x + threadIdx.x;
 64     int idy = blockIdx.y * blockDim.y + threadIdx.y;
 65     int id = idx + idy *blockDim.y *gridDim.y;
 66 
 67     while (id < WIDTH * HEIGHT)
 68     {
 69         c[id] = a[id] + b[id];
 70         id += gridDim.x * blockDim.x * gridDim.y * blockDim.y; 
 71     }
 72     return;
 73 }
 74 
 75 int main()
 76 {
 77     int i;
 78     float *h_a, *h_b, *cpu_out, *gpu_out;
 79     float *d_a, *d_b, *d_c;
 80     clock_t timeCPU;
 81     cudaEvent_t start, stop;
 82     float timeGPU;
 83     cudaEventCreate(&start);
 84     cudaEventCreate(&stop);
 85 
 86     printf("\n\tStart! Matrix dimension:\t%d × %d", WIDTH, HEIGHT);
 87 
 88     checkNULL(h_a = (float *)malloc(sizeof(float)*WIDTH*HEIGHT));
 89     checkNULL(h_b = (float *)malloc(sizeof(float)*WIDTH*HEIGHT));
 90     checkNULL(cpu_out = (float *)malloc(sizeof(float)*WIDTH*HEIGHT));
 91     checkNULL(gpu_out = (float *)malloc(sizeof(float)*WIDTH*HEIGHT));
 92     checkCudaError(cudaMalloc((float **)&d_a, sizeof(float)*WIDTH*HEIGHT));
 93     checkCudaError(cudaMalloc((float **)&d_b, sizeof(float)*WIDTH*HEIGHT));
 94     checkCudaError(cudaMalloc((float **)&d_c, sizeof(float)*WIDTH*HEIGHT));
 95 
 96     // 初始化
 97     timeCPU = clock();
 98     srand(SEED);
 99     for (i = 0; i < WIDTH*HEIGHT; i++)
100     {
101         h_a[i] = (float)rand() / RAND_MAX;
102         h_b[i] = (float)rand() / RAND_MAX;
103     }
104     printf("\n\tInitialized! Time:\t\t%8.3f ms\n", (float)(clock() - timeCPU));
105 
106     timeCPU = clock();
107     for (i = 0; i < WIDTH*HEIGHT; i++)
108         cpu_out[i] = h_a[i] + h_b[i];
109     printf("\n\tCPU time:\t%8.3f ms\n", (float)(clock() - timeCPU)); 
110 
111     cudaMemset(d_c, 0, sizeof(float) * WIDTH * HEIGHT);
112     cudaEventRecord(start, 0);
113     cudaMemcpy(d_a, h_a, sizeof(float) * WIDTH * HEIGHT, cudaMemcpyHostToDevice);
114     cudaMemcpy(d_b, h_b, sizeof(float) * WIDTH * HEIGHT, cudaMemcpyHostToDevice);
115     if(DIMENSION == 1)
116         add1 << < BLOCK_SIZE * BLOCK_SIZE, THREAD_SIZE * THREAD_SIZE >> > (d_a, d_b, d_c);
117     else
118         add2 << < dim3(BLOCK_SIZE, BLOCK_SIZE), dim3(THREAD_SIZE, THREAD_SIZE) >> > (d_a, d_b, d_c);
119     cudaMemcpy(gpu_out, d_c, sizeof(float) * WIDTH * HEIGHT, cudaMemcpyDeviceToHost);
120     cudaDeviceSynchronize();
121     cudaEventRecord(stop,0);
122     cudaEventSynchronize(stop);
123     cudaEventElapsedTime(&timeGPU, start, stop);
124     if (i = checkResult(cpu_out, gpu_out, WIDTH * HEIGHT))
125         printf("\n\tCompute error at i = %d\n\tcpu_out[i] = %10d, gpu_out[i] = %10d\n", i - 1, cpu_out[i - 1], gpu_out[i - 1]);
126     else
127         printf("\n\tGPU Compute correctly!\n");
128     printf("\n\tGPU Time:\t%8.3f ms\n", timeGPU);
129 
130     free(h_a);
131     free(h_b);
132     free(cpu_out);
133     free(gpu_out);
134     cudaFree(d_a);
135     cudaFree(d_b);
136     cudaFree(d_c);
137     getchar();
138     return 0;
139 }

 

▶输出结果,对于超大型矩阵的加法计算,左下图为一维跳转,右下图为二维跳转。矩阵较大时初始化矩阵费时较多。超大矩阵的计算上GPU相对CPU产生了一定的优势,一维跳转比二维跳转稍快,因为省去了复杂的下标映射。

 

▶ 对于较小的矩阵,GPU没有发挥出优势, 因为内存拷贝等方面耗时明显。

posted on 2017-10-12 10:03  爨爨爨好  阅读(497)  评论(0编辑  收藏  举报