Flink WordCount、打开Flink的日志输出、Spark WordCount 和 Flink WordCount 的运行流程对比

导入依赖

    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <flink.version>1.11.2</flink.version>
        <scala.binary.version>2.11</scala.binary.version>
        <scala.version>2.11.12</scala.version>
        <log4j.version>2.12.1</log4j.version>
    </properties>

    <dependencies>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-walkthrough-common_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-slf4j-impl</artifactId>
            <version>${log4j.version}</version>
        </dependency>
        
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-api</artifactId>
            <version>${log4j.version}</version>
        </dependency>
        
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-core</artifactId>
            <version>${log4j.version}</version>
        </dependency>

        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.40</version>
        </dependency>

    </dependencies>


    <build>
        <plugins>

            <!-- Java Compiler -->
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>

            <!-- Scala Compiler -->
            <plugin>
                <groupId>org.scala-tools</groupId>
                <artifactId>maven-scala-plugin</artifactId>
                <version>2.15.2</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>

        </plugins>
    </build>

WordCount 代码

package com.shujia.flink.core

// **这里很重要,有的时候这边不是 _ 程序会报错
import org.apache.flink.streaming.api.scala._

object Demo1WordCount {
  def main(args: Array[String]): Unit = {

    /**
      * 1、创建flink的运行环境
      * 是flink程序的入口
      * StreamExecutionEnvironment -- 流处理的执行环境,导包的时候有两个包可以选择
      * org.apache.flink.streaming.api.scala -- 写Scala代码
      * org.apache.flink.streaming.api.environment -- 写java代码
      */

    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

    //设置并行度, 默认并行度是计算机核心数
    env.setParallelism(2)

    /**
      * 2、读取数据
      *
      * DataStream : 相当于spark中DStream
      *
      * socketTextStream("主机名","端口号")
      *
      * 开启scoket
      * 在Linux的shell中 nc -lk 8888
      *
      */

    val linesDS: DataStream[String] = env.socketTextStream("master", 8888)

    //1、将数据展开
    val wordsDS: DataStream[String] = linesDS.flatMap(line => line.split(","))

    //2、转换成kv格式
    val kvDS: DataStream[(String, Int)] = wordsDS.map((_, 1))

    //3、按照单词进行分组
    val keyByDS: KeyedStream[(String, Int), String] = kvDS.keyBy(kv => kv._1)
    
    /**
      *
      * flink中的算子本身就是有状态的算子,
      *
      */

    //4、统计数量 sum():对value进行求和, 指定下标进行聚合
    val countDS: DataStream[(String, Int)] = keyByDS.sum(1)

    //打印结果
    //在流处理中不是foreach
    countDS.print()

    /**
      * 启动flink程序
      * execute("job_name")
      */

    env.execute("wordcount")

  }
}

Flink默认是不打印日志的

运行图:

打开Flink的日志输出

Flink 的日志多少有点摆设

1、导入log4j的依赖

        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-slf4j-impl</artifactId>
            <version>${log4j.version}</version>
        </dependency>
        
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-api</artifactId>
            <version>${log4j.version}</version>
        </dependency>
        
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-core</artifactId>
            <version>${log4j.version}</version>
        </dependency>

2、将log4j的配置文件放在项目的resources目录下

文件名:log4j2.properties

################################################################################
#  Licensed to the Apache Software Foundation (ASF) under one
#  or more contributor license agreements.  See the NOTICE file
#  distributed with this work for additional information
#  regarding copyright ownership.  The ASF licenses this file
#  to you under the Apache License, Version 2.0 (the
#  "License"); you may not use this file except in compliance
#  with the License.  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
rootLogger.level=info
rootLogger.appenderRef.console.ref=ConsoleAppender
logger.sink.name=org.apache.flink.walkthrough.common.sink.AlertSink
logger.sink.level=INFO
appender.console.name=ConsoleAppender
appender.console.type=CONSOLE
appender.console.layout.type=PatternLayout
appender.console.layout.pattern=%d{HH:mm:ss,SSS} %-5p %-60c %x - %m%n

缓冲 -- 提高吞吐量

Spark 和 Flink 都是粗粒度的资源调度

posted @ 2022-03-18 21:19  赤兔胭脂小吕布  阅读(600)  评论(0编辑  收藏  举报