Hive 中的wordCount、Hive 开窗函数

Hive 中的wordCount、Hive 开窗函数

Hive 中的wordCount

create table words(
    words string
)row format delimited fields terminated by '|';

// 数据
hello,java,hello,java,scala,python
hbase,hadoop,hadoop,hdfs,hive,hive
hbase,hadoop,hadoop,hdfs,hive,hive

select word,count(*) from (select explode(split(words,',')) word from words) a group by a.word;

// 结果
hadoop	4
hbase	2
hdfs	2
hello	2
hive	4
java	2
python	1
scala	1

Hive 开窗函数

好像给每一份数据 开一扇窗户 所以叫开窗函数

在sql中有一类函数叫做聚合函数,例如sum()、avg()、max()等等,这类函数可以将多行数据按照规则聚集为一行,一般来讲聚集后的行数是要少于聚集前的行数的.但是有时我们想要既显示聚集前的数据,又要显示聚集后的数据,这时我们便引入了窗口函数.

over (partition by … order by … )中的 partition by 分区并不是hive中分区表中的分区,他只是将select语句查询的结果做一个分区处理

测试数据
111,69,class1,department1
112,80,class1,department1
113,74,class1,department1
114,94,class1,department1
115,93,class1,department1
121,74,class2,department1
122,86,class2,department1
123,78,class2,department1
124,70,class2,department1
211,93,class1,department2
212,83,class1,department2
213,94,class1,department2
214,94,class1,department2
215,82,class1,department2
216,74,class1,department2
221,99,class2,department2
222,78,class2,department2
223,74,class2,department2
224,80,class2,department2
225,85,class2,department2
建表语句
create table new_score(
    id  int
    ,score int
    ,clazz string
    ,department string
) row format delimited fields terminated by ",";
1、row_number:无并列排名

用法: select xxxx, row_number() over(partition by 分组字段 order by 排序字段 desc) as rn from tb group by xxxx

2、dense_rank:有并列排名,并且依次递增
3、rank:有并列排名,不依次递增
4、percent_rank:(rank的结果-1)/(分区内数据的个数-1)
5、cume_dist:计算某个窗口或分区中某个值的累积分布。

假定升序排序,则使用以下公式确定累积分布: 小于等于当前值x的行数 / 窗口或partition分区内的总行数。其中 x 等于 order by 子句中指定的列的当前行中的值。

6、NTILE(n):对分区内数据再分成n组,然后打上组号

按照给定的 n 进行分组,每个组分一个数据直到分完

7、max、min、avg、count、sum:基于每个partition分区内的数据做对应的计算

8、窗口帧:用于从分区中选择指定的多条记录,供窗口函数处理

Hive 提供了两种定义窗口帧的形式:ROWSRANGE。两种类型都需要配置上界和下界。

例如,ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 表示选择分区起始记录到当前记录的所有行;

SUM(close) RANGE BETWEEN 100 PRECEDING AND 200 FOLLOWING 则通过 字段差值 来进行选择。

如当前行的 close 字段值是 200,那么这个窗口帧的定义就会选择分区中 close 字段值落在 100 至 400 区间的记录。

以下是所有可能的窗口帧定义组合。

如果没有定义窗口帧,则默认为 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

只能运用在max、min、avg、count、sum、FIRST_VALUE、LAST_VALUE这几个窗口函数上

(ROWS | RANGE) BETWEEN (UNBOUNDED | [num]) PRECEDING AND ([num] PRECEDING | CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING)
(ROWS | RANGE) BETWEEN CURRENT ROW AND (CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING)
(ROWS | RANGE) BETWEEN [num] FOLLOWING AND (UNBOUNDED | [num]) FOLLOWING
range between 3 PRECEDING and 11 FOLLOWING
//窗口帧的另一种写法
SELECT id
     ,score
     ,clazz
     ,SUM(score) OVER w as sum_w
     ,round(avg(score) OVER w,3) as avg_w
     ,count(score) OVER w as cnt_w
FROM new_score
WINDOW w AS (PARTITION BY clazz ORDER BY score rows between 2 PRECEDING and 2 FOLLOWING);
111	69	class1	217	72.333	3
113	74	class1	297	74.25	4
216	74	class1	379	75.8	5
112	80	class1	393	78.6	5
215	82	class1	412	82.4	5
212	83	class1	431	86.2	5
211	93	class1	445	89.0	5
115	93	class1	457	91.4	5
213	94	class1	468	93.6	5
114	94	class1	375	93.75	4
214	94	class1	282	94.0	3
124	70	class2	218	72.667	3
121	74	class2	296	74.0	4
223	74	class2	374	74.8	5
222	78	class2	384	76.8	5
123	78	class2	395	79.0	5
224	80	class2	407	81.4	5
225	85	class2	428	85.6	5
122	86	class2	350	87.5	4
221	99	class2	270	90.0	3
用法示例
select  id
        ,score
        ,clazz
        ,department
        ,row_number() over (partition by clazz order by score desc) as rn_rk
        ,dense_rank() over (partition by clazz order by score desc) as dense_rk
        ,rank() over (partition by clazz order by score desc) as rk
        ,percent_rank() over (partition by clazz order by score desc) as percent_rk
        ,round(cume_dist() over (partition by clazz order by score desc),3) as cume_rk
        ,NTILE(3) over (partition by clazz order by score desc) as ntile_num
        ,max(score) over (partition by clazz order by score desc range between 3 PRECEDING and 11 FOLLOWING) as max_p
from new_score;

9、LAG(col,n):往前第n行数据
10、LEAD(col,n):往后第n行数据
11、FIRST_VALUE:取分组内排序后,截止到当前行,第一个值
12、LAST_VALUE:取分组内排序后,截止到当前行,最后一个值,对于并列的排名,取最后一个
用法示例
select  id
        ,score
        ,clazz
        ,department
        ,lag(id,2) over (partition by clazz order by score desc) as lag_num
        ,LEAD(id,2) over (partition by clazz order by score desc) as lead_num
        ,FIRST_VALUE(id) over (partition by clazz order by score desc) as first_v_num
        ,LAST_VALUE(id) over (partition by clazz order by score desc) as last_v_num
        ,NTILE(3) over (partition by clazz order by score desc) as ntile_num
from new_score;

https://blog.csdn.net/qq_26937525/article/details/54925827

posted @ 2022-02-21 22:28  赤兔胭脂小吕布  阅读(305)  评论(0编辑  收藏  举报