B - B Silver Cow Party (最短路+转置)
One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
Input
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.
Output
Sample Input
4 8 2 1 2 4 1 3 2 1 4 7 2 1 1 2 3 5 3 1 2 3 4 4 4 2 3
Sample Output
10
Hint
#include <stdio.h> #include <string.h> #include <algorithm> using namespace std; int n,m,x,minn,k,ans=0; int dp[1005][1005]; int dis[1005],vis[1005],dis2[1005]; const int inf=99999999; /*dijkstrak算法*/ void djk(int x) { for(int i=1;i<=n;i++) vis[i]=0; vis[x]=1; for(int i=1;i<=n;i++)//记录点i到x的距离 dis[i]=dp[x][i]; for(int i=1;i<=n;i++) { minn=inf; for(int j=1;j<=n;j++)//两个农场之间取最短的路径 { if(!vis[j]&&dis[j]<minn) { minn=dis[j]; k=j; } } vis[k]=1; for(int j=1;j<=n;j++) { if(!vis[j]&&dis[j]>dis[k]+dp[k][j]) dis[j]=dis[k]+dp[k][j]; } } } int main() { while(scanf("%d %d %d",&n,&m,&x)!=EOF)//n头牛,m个例子,终点x; { for(int i=0;i<=n;i++)//这里i的范围要取小于n,如果取小于1005z则会runtime error {//重置数组 for(int j=0;j<=n;j++) { if(i==j) dp[i][j]=0;//从i到i距离为0,else为inf; else dp[i][j]=inf; } } for(int i=0;i<m;i++) { int u,v,w; scanf("%d %d %d",&u,&v,&w); if(dp[u][v]>w) dp[u][v]=w; } djk(x); for(int i=1;i<=n;i++) dis2[i]=dis[i];//记录distant函数之后的dis的数据 for(int i=1;i<=n;i++)//交换地图,路还是以前的路,只是起点和终点换了一下而已 { for(int j=i+1;j<=n;j++) { int tem; tem=dp[j][i]; dp[j][i]=dp[i][j]; dp[i][j]=tem; } } djk(x); for(int i=1;i<=n;i++) { ans=max(ans,dis2[i]+dis[i]); } printf("%d\n",ans); } }