POJ 3660 cow contest (Folyed 求传递闭包)

N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.

The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ NA ≠ B), then cow A will always beat cow B.

Farmer John is trying to rank the cows by skill level. Given a list the results of M(1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B

Output

* Line 1: A single integer representing the number of cows whose ranks can be determined
 

Sample Input

5 5
4 3
4 2
3 2
1 2
2 5

Sample Output

2
题解:
有N头牛,然后给你M个关系,
每个关系两头牛的编号:代表前者打败后者;
然后让你求可以确定名次的有多少头牛;
我们可以利用Folyed 来找找出每头牛可以和多少头牛建立关系,当且一头牛可以和剩下的N-1头牛都可以建立关系时,它的名次就可以确定了;求和即可达到答案;
参考代码:
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #include<cstdlib>
 6 #include<algorithm>
 7 #include<queue>
 8 #include<deque>
 9 #include<stack>
10 #include<set>
11 #include<vector>
12 #include<map>
13 using namespace std;
14 typedef long long LL;
15 typedef pair<int,int> PII;
16 #define PI acos(-1)
17 #define EPS 1e-8
18 const int INF=0x3f3f3f3f;
19 const LL inf=0x3f3f3f3f3f3f3f3fLL;
20 
21 const int maxn=110;
22 int N,M,A,B,dp[maxn][maxn];
23 int main()
24 {
25     scanf("%d%d",&N,&M);
26     memset(dp,0,sizeof dp);
27     for(int i=1;i<=M;i++) scanf("%d%d",&A,&B),dp[A][B]=1;
28     
29     for(int k=1;k<=N;k++)
30         for(int i=1;i<=N;i++)
31             for(int j=1;j<=N;j++) if(dp[i][k]&&dp[k][j]) dp[i][j]=1;
32             
33     int ans=0,j;
34     for(int i=1;i<=N;i++)
35     {
36         for(j=1;j<=N;j++) 
37         {
38             if(i==j) continue;
39             if(!dp[i][j]&&!dp[j][i]) break;
40         }
41         if(j>N) ans++;
42     }
43     printf("%d\n",ans);
44     return 0;
45 }
View Code

 

posted @ 2018-08-22 21:34  StarHai  阅读(323)  评论(0编辑  收藏  举报