CoderForces-617B

Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., ajis equal to k.

Input

The first line of the input contains integers nm and k (1 ≤ n, m ≤ 100 0000 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob's favorite number respectively.

The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob's array.

Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.

Output

Print m lines, answer the queries in the order they appear in the input.

Example
Input
6 2 3
1 2 1 1 0 3
1 6
3 5
Output
7
0
Input
5 3 1
1 1 1 1 1
1 5
2 4
1 3
Output
9
4
4
Note

In the first sample the suitable pairs of i and j for the first query are: (12), (14), (15), (23), (36), (56), (66). Not a single of these pairs is suitable for the second query.

In the second sample xor equals 1 for all subarrays of an odd length.



题意:这道题意思为:给你一行数,让你查找在这行数中有多少子区间满足其内的数亦或为K;

题解:可以让sum[i]表示从1亦或到i的值;sum[i]^=sum[i-1];

sum[r]=k^sum[l-1];(l,r分别表示左右端点)

AC代码为:

#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 4;
struct node
{
	friend bool operator< (node x, node y)
	{
		if (x.pos == y.pos)return x.r<y.r;
		return x.l<y.l;
	}
	int l, r, id;
	int pos;
};
node qu[N];
int n, m, k;
int b[N], num[2 * N];
long long ans[N];
void solve()
{
	memset(num, 0, sizeof(num));
	int le = 1, ri = 0;
	long long temp = 0;
	for (int i = 1; i <= m; i++)
	{
		while (ri<qu[i].r)
		{
			ri++;
			temp += num[b[ri] ^ k];
			num[b[ri]]++;
		}
		while (ri>qu[i].r)
		{
			num[b[ri]]--;
			temp -= num[b[ri] ^ k];
			ri--;
		}
		while (le>qu[i].l - 1)
		{
			le--;
			temp += num[b[le] ^ k];
			num[b[le]]++;
		}
		while (le<qu[i].l - 1)
		{
			num[b[le]]--;
			temp -= num[b[le] ^ k];
			le++;
		}
		ans[qu[i].id] = temp;
	}
}
int main()
{
	b[0] = 0;
	scanf("%d%d%d", &n, &m, &k);
	for (int i = 1; i <= n; i++)
	{
		scanf("%d", &b[i]);
		b[i] ^= b[i - 1];
	}
	int s = sqrt(n);
	for (int i = 1; i <= m; i++)
	{
		scanf("%d%d", &qu[i].l, &qu[i].r);
		qu[i].id = i;
		qu[i].pos = qu[i].l / s;
	}
	sort(qu + 1, qu + m + 1);
	solve();
	for (int i = 1; i <= m; i++)
	{
		cout << ans[i] << "\n";
	}
	return 0;
}



posted @ 2018-03-20 17:12  StarHai  阅读(232)  评论(0编辑  收藏  举报