CoderForces999F-Cards and Joy
There are nn players sitting at the card table. Each player has a favorite number. The favorite number of the jj-th player is fjfj.
There are k⋅nk⋅n cards on the table. Each card contains a single integer: the ii-th card contains number cici. Also, you are given a sequence h1,h2,…,hkh1,h2,…,hk. Its meaning will be explained below.
The players have to distribute all the cards in such a way that each of them will hold exactly kk cards. After all the cards are distributed, each player counts the number of cards he has that contains his favorite number. The joy level of a player equals htht if the player holds tt cards containing his favorite number. If a player gets no cards with his favorite number (i.e., t=0t=0), his joy level is 00.
Print the maximum possible total joy levels of the players after the cards are distributed. Note that the sequence h1,…,hkh1,…,hk is the same for all the players.
The first line of input contains two integers nn and kk (1≤n≤500,1≤k≤101≤n≤500,1≤k≤10) — the number of players and the number of cards each player will get.
The second line contains k⋅nk⋅n integers c1,c2,…,ck⋅nc1,c2,…,ck⋅n (1≤ci≤1051≤ci≤105) — the numbers written on the cards.
The third line contains nn integers f1,f2,…,fnf1,f2,…,fn (1≤fj≤1051≤fj≤105) — the favorite numbers of the players.
The fourth line contains kk integers h1,h2,…,hkh1,h2,…,hk (1≤ht≤1051≤ht≤105), where htht is the joy level of a player if he gets exactly tt cards with his favorite number written on them. It is guaranteed that the condition ht−1<htht−1<ht holds for each t∈[2..k]t∈[2..k].
Print one integer — the maximum possible total joy levels of the players among all possible card distributions.
4 3 1 3 2 8 5 5 8 2 2 8 5 2 1 2 2 5 2 6 7
21
3 3 9 9 9 9 9 9 9 9 9 1 2 3 1 2 3
0
In the first example, one possible optimal card distribution is the following:
- Player 11 gets cards with numbers [1,3,8][1,3,8];
- Player 22 gets cards with numbers [2,2,8][2,2,8];
- Player 33 gets cards with numbers [2,2,8][2,2,8];
- Player 44 gets cards with numbers [5,5,5][5,5,5].
Thus, the answer is 2+6+6+7=212+6+6+7=21.
In the second example, no player can get a card with his favorite number. Thus, the answer is 00.
题意:n∗kn∗k张卡片分给n个人,每人k张。第二行输入n∗kn∗k张卡片上面写的数字,第三行输入nn个人喜欢的数字,第四行输入k个数字,h[i]h[i]表示拿到ii张自己喜欢的卡片可以获得的快乐值。问所有人快乐值之和最大为多少?
题解:DP,dp[i][j],表示i个相同的数字给j个人(这j个人都喜欢这相同的数字);cnt[i]表示数字i的数量,num[j]表示喜欢j 的人数;
状态转换方程为:dp[i][j]=max(dp[i][j],dp[i-u][j-1]+w[u]);(1=<u<=k)
AC代码为:
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+10;
int n,k,a[maxn],f[5005],w[15];
int cnt[maxn],num[maxn],dp[5005][521];
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
memset(cnt,0,sizeof cnt);
memset(num,0,sizeof num);
cin>>n>>k;
for(int i=1;i<=n*k;i++) cin>>a[i],cnt[a[i]]++;
for(int i=1;i<=n;i++) cin>>f[i],num[f[i]]++;
for(int i=1;i<=k;i++) cin>>w[i];
for(int i=1;i<=n*k;i++)
{
dp[i][1]=w[min(i,k)];
for(int j=2;j<=n;j++)
{
for(int u=1;u<=min(i,k);u++)
dp[i][j]=max(dp[i][j],dp[i-u][j-1]+w[u]);
}
}
long long ans=0;
for(int i=1;i<maxn;i++) if(num[i]) ans+=dp[cnt[i]][num[i]];
cout<<ans<<endl;
return 0;
}
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 软件产品开发中常见的10个问题及处理方法
· .NET 原生驾驭 AI 新基建实战系列:向量数据库的应用与畅想
· 从问题排查到源码分析:ActiveMQ消费端频繁日志刷屏的秘密
· 一次Java后端服务间歇性响应慢的问题排查记录
· dotnet 源代码生成器分析器入门
· ThreeJs-16智慧城市项目(重磅以及未来发展ai)
· .NET 原生驾驭 AI 新基建实战系列(一):向量数据库的应用与畅想
· Ai满嘴顺口溜,想考研?浪费我几个小时
· Browser-use 详细介绍&使用文档
· 软件产品开发中常见的10个问题及处理方法