KAFKA经典问题
基础题目
1、Apache Kafka 是什么?
Apach Kafka 是一款分布式流处理框架,用于实时构建流处理应用。它有一个核心 的功能广为人知,即作为企业级的消息引擎被广泛使用。
你一定要先明确它的流处理框架地位,这样能给面试官留 下一个很专业的印象。
2、什么是消费者组?
消费者组是 Kafka 独有的概念,如果面试官问这 个,就说明他对此是有一定了解的。我先给出标准答案:
1、定义:即消费者组是 Kafka 提供的可扩展且具有容错性的消费者机制。
2、原理:在 Kafka 中,消费者组是一个由多个消费者实例 构成的组。多个实例共同订阅若干个主题,实现共同消费。同一个组下的每个实例都配置有 相同的组 ID,被分配不同的订阅分区。当某个实例挂掉的时候,其他实例会自动地承担起 它负责消费的分区。
此时,又有一个小技巧给到你:消费者组的题目,能够帮你在某种程度上掌控下面的面试方
向。
- 如果你擅长位移值原理,就不妨再提一下消费者组的位移提交机制;
- 如果你擅长 Kafka Broker,可以提一下消费者组与 Broker 之间的交互;
- 如果你擅长与消费者组完全不相关的 Producer,那么就可以这么说:“消费者组要消 费的数据完全来自于 Producer 端生产的消息,我对 Producer 还是比较熟悉的。”
3、在 Kafka 中,ZooKeeper 的作用是什么?
这是一道能够帮助你脱颖而出的题目。碰到这个题目,请在心中暗笑三声。
目前,Kafka 使用 ZooKeeper 存放集群元数据、成员管理、Controller 选举,以及其他一些管理类任务。之后,等 KIP-500 提案完成后,Kafka 将完全不再依赖 于 ZooKeeper。
记住,一定要突出“目前”,以彰显你非常了解社区的演进计划。“存放元数据”是指主题 分区的所有数据都保存在 ZooKeeper 中,且以它保存的数据为权威,其他“人”都要与它 保持对齐。“成员管理”是指 Broker 节点的注册、注销以及属性变更,等 等。“Controller 选举”是指选举集群 Controller,而其他管理类任务包括但不限于主题 删除、参数配置等。
不过,抛出 KIP-500 也可能是个双刃剑。碰到非常资深的面试官,他可能会进一步追问你 KIP-500 是做的。一言以蔽之:KIP-500 思想,是使用社区自研的基于 Raft 的共识算法, 替代 ZooKeeper,实现 Controller 自选举。
4、解释下 Kafka 中位移(offset)的作用
在 Kafka 中,每个 主题分区下的每条消息都被赋予了一个唯一的 ID 数值,用于标识它在分区中的位置。这个 ID 数值,就被称为位移,或者叫偏移量。一旦消息被写入到分区日志,它的位移值将不能 被修改。
答完这些之后,你还可以把整个面试方向转移到你希望的地方。常见方法有以下 3 种:
- 如果你深谙 Broker 底层日志写入的逻辑,可以强调下消息在日志中的存放格式;
- 如果你明白位移值一旦被确定不能修改,可以强调下“Log Cleaner 组件都不能影响位 移值”这件事情;
- 如果你对消费者的概念还算熟悉,可以再详细说说位移值和消费者位移值之间的区别。
5、阐述下 Kafka 中的领导者副本(Leader Replica)和追随者副本 (Follower Replica)的区别
这道题表面上是考核你对 Leader 和 Follower 区别的理解,但很容易引申到 Kafka 的同步 机制上。因此,我建议你主动出击,一次性地把隐含的考点也答出来,也许能够暂时把面试 官“唬住”,并体现你的专业性。
你可以这么回答:Kafka 副本当前分为领导者副本和追随者副本。只有 Leader 副本才能 对外提供读写服务,响应 Clients 端的请求。Follower 副本只是采用拉(PULL)的方 式,被动地同步 Leader 副本中的数据,并且在 Leader 副本所在的 Broker 宕机后,随时 准备应聘 Leader 副本。
通常来说,回答到这个程度,其实才只说了 60%,因此,我建议你再回答两个额外的加分 项。
- 强调 Follower 副本也能对外提供读服务。自 Kafka 2.4 版本开始,社区通过引入新的 Broker 端参数,允许 Follower 副本有限度地提供读服务。
- 强调 Leader 和 Follower 的消息序列在实际场景中不一致。很多原因都可能造成 Leader 和 Follower 保存的消息序列不一致,比如程序 Bug、网络问题等。这是很严重 的错误,必须要完全规避。你可以补充下,之前确保一致性的主要手段是高水位机制, 但高水位值无法保证 Leader 连续变更场景下的数据一致性,因此,社区引入了 Leader Epoch 机制,来修复高水位值的弊端。关于“Leader Epoch 机制”,国内的资料不是 很多,它的普及度远不如高水位,不妨大胆地把这个概念秀出来,力求惊艳一把。
实操题目
6、如何设置 Kafka 能接收的最大消息的大小?
这道题除了要回答消费者端的参数设置之外,一定要加上 Broker 端的设置,这样才算完整。毕竟,如果 Producer 都不能向 Broker 端发送数据很大的消息,又何来消费一说呢? 因此,你需要同时设置 Broker 端参数和 Consumer 端参数。
- Broker 端参数:message.max.bytes、max.message.bytes(主题级别)和 replica.fetch.max.bytes。
- Consumer 端参数:fetch.message.max.bytes。
Broker 端的最后一个参数比较容易遗漏。我们必须调整 Follower 副本能够接收的最大消 息的大小,否则,副本同步就会失败。因此,把这个答出来的话,就是一个加分项。
7、监控 Kafka 的框架都有哪些?
面试官其实是在 考察你对监控框架的了解广度,或者说,你是否知道很多能监控 Kafka 的框架或方法。下 面这些就是 Kafka 发展历程上比较有名气的监控系统。
- Kafka Manager:应该算是最有名的专属 Kafka 监控框架了,是独立的监控系统。
- Kafka Monitor:LinkedIn 开源的免费框架,支持对集群进行系统测试,并实时监控测
试结果。 - CruiseControl:也是 LinkedIn 公司开源的监控框架,用于实时监测资源使用率,以及 提供常用运维操作等。无 UI 界面,只提供 REST API。
- JMX 监控:由于 Kafka 提供的监控指标都是基于 JMX 的,因此,市面上任何能够集成 JMX 的框架都可以使用,比如 Zabbix 和 Prometheus。
- 已有大数据平台自己的监控体系:像 Cloudera 提供的 CDH 这类大数据平台,天然就提 供 Kafka 监控方案。
- JMXTool:社区提供的命令行工具,能够实时监控 JMX 指标。答上这一条,属于绝对 的加分项,因为知道的人很少,而且会给人一种你对 Kafka 工具非常熟悉的感觉。如果 你暂时不了解它的用法,可以在命令行以无参数方式执行一下kafka-run-class.sh kafka.tools.JmxTool,学习下它的用法。
8、Broker 的 Heap Size 如何设置?
如何设置 Heap Size 的问题,其实和 Kafka 关系不大,它是一类非常通用的面试题目。一 旦你应对不当,面试方向很有可能被引到 JVM 和 GC 上去,那样的话,你被问住的几率就 会增大。因此,我建议你简单地介绍一下 Heap Size 的设置方法,并把重点放在 Kafka Broker 堆大小设置的最佳实践上。
比如,你可以这样回复:任何 Java 进程 JVM 堆大小的设置都需要仔细地进行考量和测 试。一个常见的做法是,以默认的初始 JVM 堆大小运行程序,当系统达到稳定状态后,手动触发一次 Full GC,然后通过 JVM 工具查看 GC 后的存活对象大小。之后,将堆大小设 置成存活对象总大小的 1.5~2 倍。对于 Kafka 而言,这个方法也是适用的。不过,业界有 个最佳实践,那就是将 Broker 的 Heap Size 固定为 6GB。经过很多公司的验证,这个大 小是足够且良好的。
9、如何估算 Kafka 集群的机器数量?
这道题目考查的是机器数量和所用资源之间的关联关系。所谓资源,也就是 CPU、内存、磁盘和带宽。
通常来说,CPU 和内存资源的充足是比较容易保证的,因此,你需要从磁盘空间和带宽占用两个维度去评估机器数量。
在预估磁盘的占用时,你一定不要忘记计算副本同步的开销。如果一条消息占用 1KB 的磁 盘空间,那么,在有 3 个副本的主题中,你就需要 3KB 的总空间来保存这条消息。显式地 将这些考虑因素答出来,能够彰显你考虑问题的全面性,是一个难得的加分项。
对于评估带宽来说,常见的带宽有 1Gbps 和 10Gbps,但你要切记,这两个数字仅仅是最大值。因此,你最好和面试官确认一下给定的带宽是多少。然后,明确阐述出当带宽占用接 近总带宽的 90% 时,丢包情形就会发生。这样能显示出你的网络基本功。
10、Leader 总是 -1,怎么破?
在生产环境中,你一定碰到过“某个主题分区不能工作了”的情形。使用命令行查看状态的 话,会发现 Leader 是 -1,于是,你使用各种命令都无济于事,最后只能用“重启大 法”。
但是,有没有什么办法,可以不重启集群,就能解决此事呢?这就是此题的由来。
我直接给答案:删除 ZooKeeper 节点 /controller,触发 Controller 重选举。 Controller 重选举能够为所有主题分区重刷分区状态,可以有效解决因不一致导致的 Leader 不可用问题。我几乎可以断定,当面试官问出此题时,要么就是他真的不知道怎么 解决在向你寻求答案,要么他就是在等你说出这个答案。所以,千万别一上来就说“来个重 启”之类的话。
炫技式题目
11、LEO、LSO、AR、ISR、HW 都表示什么含义?
- LEO:Log End Offset。日志末端位移值或末端偏移量,表示日志下一条待插入消息的 位移值。举个例子,如果日志有 10 条消息,位移值从 0 开始,那么,第 10 条消息的位 移值就是 9。此时,LEO = 10。
- LSO:Log Stable Offset。这是 Kafka 事务的概念。如果你没有使用到事务,那么这个 值不存在(其实也不是不存在,只是设置成一个无意义的值)。该值控制了事务型消费 者能够看到的消息范围。它经常与 Log Start Offset,即日志起始位移值相混淆,因为 有些人将后者缩写成 LSO,这是不对的。在 Kafka 中,LSO 就是指代 Log Stable Offset。
- AR:Assigned Replicas。AR 是主题被创建后,分区创建时被分配的副本集合,副本个 数由副本因子决定。
- ISR:In-Sync Replicas。Kafka 中特别重要的概念,指代的是 AR 中那些与 Leader 保 持同步的副本集合。在 AR 中的副本可能不在 ISR 中,但 Leader 副本天然就包含在 ISR 中。关于 ISR,还有一个常见的面试题目是如何判断副本是否应该属于 ISR。目前的判断 依据是:Follower 副本的 LEO 落后 Leader LEO 的时间,是否超过了 Broker 端参数 replica.lag.time.max.ms 值。如果超过了,副本就会被从 ISR 中移除。
- HW:高水位值(High watermark)。这是控制消费者可读取消息范围的重要字段。一 个普通消费者只能“看到”Leader 副本上介于 Log Start Offset 和 HW(不含)之间的 所有消息。水位以上的消息是对消费者不可见的。关于 HW,问法有很多,我能想到的 最高级的问法,就是让你完整地梳理下 Follower 副本拉取 Leader 副本、执行同步机制 的详细步骤。这就是我们的第 20 道题的题目,一会儿我会给出答案和解析。
12、Kafka 能手动删除消息吗?
其实,Kafka 不需要用户手动删除消息。它本身提供了留存策略,能够自动删除过期消息。 当然,它是支持手动删除消息的。因此,你最好从这两个维度去回答。
- 对于设置了 Key 且参数 cleanup.policy=compact 的主题而言,我们可以构造一条 <Key,null> 的消息发送给 Broker,依靠 Log Cleaner 组件提供的功能删除掉该 Key 的消息。
- 对于普通主题而言,我们可以使用 kafka-delete-records 命令,或编写程序调用 Admin.deleteRecords 方法来删除消息。这两种方法殊途同归,底层都是调用 Admin 的 deleteRecords 方法,通过将分区 Log Start Offset 值抬高的方式间接删除消息。
13、__consumer_offsets 是做什么用的?
这是一个内部主题,公开的官网资料很少涉及到。因此,我认为,此题属于面试官炫技一类 的题目。你要小心这里的考点:该主题有 3 个重要的知识点,你一定要全部答出来,才会显得对这块知识非常熟悉。
它是一个内部主题,无需手动干预,由 Kafka 自行管理。当然,我们可以创建该主题。
它的主要作用是负责注册消费者以及保存位移值。可能你对保存位移值的功能很熟悉, 但其实该主题也是保存消费者元数据的地方。千万记得把这一点也回答上。另外,这里 的消费者泛指消费者组和独立消费者,而不仅仅是消费者组。
Kafka 的 GroupCoordinator 组件提供对该主题完整的管理功能,包括该主题的创建、 写入、读取和 Leader 维护等。
14、分区 Leader 选举策略有几种?
分区的 Leader 副本选举对用户是完全透明的,它是由 Controller 独立完成的。你需要回答的是,在哪些场景下,需要执行分区 Leader 选举。每一种场景对应于一种选举策略。当前,Kafka 有 4 种分区 Leader 选举策略。
- OfflinePartition Leader 选举:每当有分区上线时,就需要执行 Leader 选举。所谓的分区上线,可能是创建了新分区,也可能是之前的下线分区重新上线。这是最常见的分区 Leader 选举场景。
- ReassignPartition Leader 选举:当你手动运行 kafka-reassign-partitions 命令,或者是调用 Admin 的 alterPartitionReassignments 方法执行分区副本重分配时,可能触发此类选举。假设原来的 AR 是[1,2,3],Leader 是 1,当执行副本重分配后,副本集 合 AR 被设置成[4,5,6],显然,Leader 必须要变更,此时会发生 Reassign Partition Leader 选举。
- PreferredReplicaPartition Leader 选举:当你手动运行 kafka-preferred-replica- election 命令,或自动触发了 Preferred Leader 选举时,该类策略被激活。所谓的 Preferred Leader,指的是 AR 中的第一个副本。比如 AR 是[3,2,1],那么, Preferred Leader 就是 3。
- ControlledShutdownPartition Leader 选举:当 Broker 正常关闭时,该 Broker 上 的所有 Leader 副本都会下线,因此,需要为受影响的分区执行相应的 Leader 选举。
这 4 类选举策略的大致思想是类似的,即从 AR 中挑选首个在 ISR 中的副本,作为新 Leader。当然,个别策略有些微小差异。不过,回答到这种程度,应该足以应付面试官 了。毕竟,微小差别对选举 Leader 这件事的影响很小。
15、Kafka 的哪些场景中使用了零拷贝(Zero Copy)?
Zero Copy 是特别容易被问到的高阶题目。在 Kafka 中,体现 Zero Copy 使用场景的地方有两处:基于 mmap 的索引和日志文件读写所用的 TransportLayer。
先说第一个。索引都是基于 MappedByteBuffer 的,也就是让用户态和内核态共享内核态 的数据缓冲区,此时,数据不需要复制到用户态空间。不过,mmap 虽然避免了不必要的 拷贝,但不一定就能保证很高的性能。在不同的操作系统下,mmap 的创建和销毁成本可 能是不一样的。很高的创建和销毁开销会抵消 Zero Copy 带来的性能优势。由于这种不确 定性,在 Kafka 中,只有索引应用了 mmap,最核心的日志并未使用 mmap 机制。
再说第二个。TransportLayer 是 Kafka 传输层的接口。它的某个实现类使用了 FileChannel 的 transferTo 方法。该方法底层使用 sendfile 实现了 Zero Copy。对 Kafka 而言,如果 I/O 通道使用普通的 PLAINTEXT,那么,Kafka 就可以利用 Zero Copy 特 性,直接将页缓存中的数据发送到网卡的 Buffer 中,避免中间的多次拷贝。相反,如果 I/O 通道启用了 SSL,那么,Kafka 便无法利用 Zero Copy 特性了。
深度思考题
16、Kafka 为什么不支持读写分离?
这道题目考察的是你对 Leader/Follower 模型的思考。
Leader/Follower 模型并没有规定 Follower 副本不可以对外提供读服务。很多框架都是允 许这么做的,只是 Kafka 最初为了避免不一致性的问题,而采用了让 Leader 统一提供服 务的方式。
不过,在开始回答这道题时,你可以率先亮出观点:自 Kafka 2.4 之后,Kafka 提供了有限度的读写分离,也就是说,Follower 副本能够对外提供读服务。
说完这些之后,你可以再给出之前的版本不支持读写分离的理由。
- 场景不适用。读写分离适用于那种读负载很大,而写操作相对不频繁的场景,可 Kafka 不属于这样的场景。
- 同步机制。Kafka 采用 PULL 方式实现 Follower 的同步,因此,Follower 与 Leader 存 在不一致性窗口。如果允许读 Follower 副本,就势必要处理消息滞后(Lagging)的问题。
17、如何调优 Kafka?
回答任何调优问题的第一步,就是确定优化目标,并且定量给出目标!这点特别重要。对于 Kafka 而言,常见的优化目标是吞吐量、延时、持久性和可用性。每一个方向的优化思路都 是不同的,甚至是相反的。
确定了目标之后,还要明确优化的维度。有些调优属于通用的优化思路,比如对操作系统、 JVM 等的优化;有些则是有针对性的,比如要优化 Kafka 的 TPS。我们需要从 3 个方向去考虑
- Producer 端:增加 batch.size、linger.ms,启用压缩,关闭重试等。
- Broker 端:增加 num.replica.fetchers,提升 Follower 同步 TPS,避免 Broker Full GC 等。
- Consumer:增加 fetch.min.bytes 等
18、Controller 发生网络分区(Network Partitioning)时,Kafka 会怎 么样?
这道题目能够诱发我们对分布式系统设计、CAP 理论、一致性等多方面的思考。不过,针 对故障定位和分析的这类问题,我建议你首先言明“实用至上”的观点,即不论怎么进行理论分析,永远都要以实际结果为准。一旦发生 Controller 网络分区,那么,第一要务就是 查看集群是否出现“脑裂”,即同时出现两个甚至是多个 Controller 组件。这可以根据 Broker 端监控指标 ActiveControllerCount 来判断。
现在,我们分析下,一旦出现这种情况,Kafka 会怎么样。
由于 Controller 会给 Broker 发送 3 类请求,即LeaderAndIsrRequest、 StopReplicaRequest 和 UpdateMetadataRequest,因此,一旦出现网络分区,这些请求将不能顺利到达 Broker 端。这将影响主题的创建、修改、删除操作的信息同步,表现为 集群仿佛僵住了一样,无法感知到后面的所有操作。因此,网络分区通常都是非常严重的问 题,要赶快修复。
19、Java Consumer 为什么采用单线程来获取消息?
在回答之前,如果先把这句话说出来,一定会加分:Java Consumer 是双线程的设计。一 个线程是用户主线程,负责获取消息;另一个线程是心跳线程,负责向 Kafka 汇报消费者 存活情况。将心跳单独放入专属的线程,能够有效地规避因消息处理速度慢而被视为下线 的“假死”情况。
单线程获取消息的设计能够避免阻塞式的消息获取方式。单线程轮询方式容易实现异步非阻塞式,这样便于将消费者扩展成支持实时流处理的操作算子。因为很多实时流处理操作算子都不能是阻塞式的。另外一个可能的好处是,可以简化代码的开发。多线程交互的代码是非常容易出错的。
20、简述 Follower 副本消息同步的完整流程
首先,Follower 发送 FETCH 请求给 Leader。接着,Leader 会读取底层日志文件中的消 息数据,再更新它内存中的 Follower 副本的 LEO 值,更新为 FETCH 请求中的 fetchOffset 值。最后,尝试更新分区高水位值。Follower 接收到 FETCH 响应之后,会把 消息写入到底层日志,接着更新 LEO 和 HW 值。
Leader 和 Follower 的 HW 值更新时机是不同的,Follower 的 HW 更新永远落后于 Leader 的 HW。这种时间上的错配是造成各种不一致的原因。
链接参考:https://www.jianshu.com/p/511962462e58