Druid学习之路 (五)Druid的数据摄取任务类型
作者:Syn良子 出处:https://www.cnblogs.com/cssdongl/p/9885534.html 转载请注明出处
Druid的数据摄取任务类型
Druid支持很多种类型的数据摄取任务.任务通过CURL POST的方式提交到Overlord节点然后分配给middle manager运行.
Segment创建任务类型
本地批处理索引任务
本地批处理摄取任务
{
"type" : "index",
"spec" : {
"dataSchema" : {
"dataSource" : "wikipedia",
"parser" : {
"type" : "string",
"parseSpec" : {
"format" : "json",
"timestampSpec" : {
"column" : "timestamp",
"format" : "auto"
},
"dimensionsSpec" : {
"dimensions": ["page","language","user","unpatrolled","newPage","robot","anonymous","namespace","continent","country","region","city"],
"dimensionExclusions" : [],
"spatialDimensions" : []
}
}
},
"metricsSpec" : [
{
"type" : "count",
"name" : "count"
},
{
"type" : "doubleSum",
"name" : "added",
"fieldName" : "added"
},
{
"type" : "doubleSum",
"name" : "deleted",
"fieldName" : "deleted"
},
{
"type" : "doubleSum",
"name" : "delta",
"fieldName" : "delta"
}
],
"granularitySpec" : {
"type" : "uniform",
"segmentGranularity" : "DAY",
"queryGranularity" : "NONE",
"intervals" : [ "2013-08-31/2013-09-01" ]
}
},
"ioConfig" : {
"type" : "index",
"firehose" : {
"type" : "local",
"baseDir" : "examples/indexing/",
"filter" : "wikipedia_data.json"
}
},
"tuningConfig" : {
"type" : "index",
"targetPartitionSize" : 5000000,
"maxRowsInMemory" : 75000
}
}
}
以上为本地索引任务的语法格式,注意type必须为"index",这个任务将本地examples/indexing/下的wikipedia_data.json文件摄取到druid的segment中去,可以通过CURL POST的方式提交到Overlord,并不需要额外的hadoop配置
Hadoop索引任务
{
"type" : "index_hadoop",
"spec" : {
"dataSchema" : {
"dataSource" : "wikipedia",
"parser" : {
"type" : "hadoopyString",
"parseSpec" : {
"format" : "json",
"timestampSpec" : {
"column" : "timestamp",
"format" : "auto"
},
"dimensionsSpec" : {
"dimensions": ["page","language","user","unpatrolled","newPage","robot","anonymous","namespace","continent","country","region","city"],
"dimensionExclusions" : [],
"spatialDimensions" : []
}
}
},
"metricsSpec" : [
{
"type" : "count",
"name" : "count"
},
{
"type" : "doubleSum",
"name" : "added",
"fieldName" : "added"
},
{
"type" : "doubleSum",
"name" : "deleted",
"fieldName" : "deleted"
},
{
"type" : "doubleSum",
"name" : "delta",
"fieldName" : "delta"
}
],
"granularitySpec" : {
"type" : "uniform",
"segmentGranularity" : "DAY",
"queryGranularity" : "NONE",
"intervals" : [ "2013-08-31/2013-09-01" ]
}
},
"ioConfig" : {
"type" : "hadoop",
"inputSpec" : {
"type" : "static",
"paths" : "/MyDirectory/example/wikipedia_data.json"
}
},
"tuningConfig" : {
"type": "hadoop"
}
},
"hadoopDependencyCoordinates": <my_hadoop_version>
}
以上为Hadoop索引任务的语法格式,注意type必须为"index_hadoop",这个任务将/MyDirectory/example/wikipedia_data.json文件摄取到druid的segment中去,注意这个路径是基于HDFS的,任务可以通过CURL POST的方式提交到Overlord,需要额外的hadoop已经配置好,因为最终会转化为MapReduce的方式来摄取
Kafka索引任务
{
"type": "kafka",
"dataSchema": {
"dataSource": "metrics-kafka",
"parser": {
"type": "string",
"parseSpec": {
"format": "json",
"timestampSpec": {
"column": "timestamp",
"format": "auto"
},
"dimensionsSpec": {
"dimensions": [],
"dimensionExclusions": [
"timestamp",
"value"
]
}
}
},
"metricsSpec": [
{
"name": "count",
"type": "count"
},
{
"name": "value_sum",
"fieldName": "value",
"type": "doubleSum"
},
{
"name": "value_min",
"fieldName": "value",
"type": "doubleMin"
},
{
"name": "value_max",
"fieldName": "value",
"type": "doubleMax"
}
],
"granularitySpec": {
"type": "uniform",
"segmentGranularity": "HOUR",
"queryGranularity": "NONE"
}
},
"tuningConfig": {
"type": "kafka",
"maxRowsPerSegment": 5000000
},
"ioConfig": {
"topic": "metrics",
"consumerProperties": {
"bootstrap.servers": "localhost:9092"
},
"taskCount": 1,
"replicas": 1,
"taskDuration": "PT1H"
}
}
以上为Kafka索引任务的语法格式,注意type必须为"kafka",这个任务通过localhost:9092端口来消费kafka中的数据并摄取到druid的segment中去,注意这个kafka摄取的任务类型还在实验阶段并且需要kafka0.10的支持
流式Streaming push任务类型
这种任务类型是通过Tranquility来自动化的创建realtime任务类型提交到overlord来运行.Tranquility是什么?如下为其github地址
我们可以利用Tranquility消费实时数据并向Druid发送实时事件流,并无缝地处理分区,复制,提供服务发现等功能.我举个栗子,比如你可以通过storm或者sparkstreaming或者flink来集成Tranquility实时的消费kafka数据流并加载到druid的segments中去并且可以同时进行实时的数据查询.这种方案要写大量代码的但是相对来说比较成熟自由度较高.随后我会找时间单独详细讲解.
压缩任务类型
{
"type": "compact",
"id": <task_id>,
"dataSource": <task_datasource>,
"interval": <interval to specify segments to be merged>,
"dimensions" <custom dimensionsSpec>,
"tuningConfig" <index task tuningConfig>,
"context": <task context>
}
注意任务类型必须为compact,这个任务类型可以压缩指定时间段内的segments到一个新的segments并同时指定分区数和维度组合
参考资料:Druid的任务类型总览