Ari的小跟班

  :: :: 博问 :: 闪存 :: :: :: :: 管理 ::
  65 随笔 :: 1 文章 :: 1 评论 :: 15011 阅读

乐观锁与悲观锁

参考什么是乐观锁,什么是悲观锁 - 简书 (jianshu.com)

并发控制

​ 当程序中可能出现并发的情况时,就需要保证在并发情况下数据的准确性,以此确保当前用户和其他用户一起操作时,所得到的结果和他单独操作时的结果是一样的。这就叫做并发控制。并发控制的目的是保证一个用户的工作不会对另一个用户的工作产生不合理的影响。

​ 没有做好并发控制,就可能导致脏读、幻读和不可重复读等问题。常说的并发控制,一般都和数据库管理系统(DBMS)有关。在 DBMS 中并发控制的任务,是确保多个事务同时增删改查同一数据时,不破坏事务的隔离性一致性数据库统一性

​ 实现并发控制的主要手段分为乐观并发控制悲观并发控制两种。无论是悲观锁还是乐观锁,都是人们定义出来的概念,可以认为是一种思想。其实不仅仅是关系型数据库系统中有乐观锁和悲观锁的概念,像 hibernate、tair、memcache 等都有类似的概念。所以,不应该拿乐观锁、悲观锁和其他的数据库锁等进行对比。乐观锁比较适用于读多写少的情况(多读场景),悲观锁比较适用于写多读少的情况(多写场景)。

悲观锁(Pessimistic Lock)

理解

​ 当要对数据库中的一条数据进行修改的时候,为了避免同时被其他人修改,最好的办法就是直接对该数据进行加锁以防止并发。这种借助数据库锁机制,在修改数据之前先锁定,再修改的方式被称之为悲观并发控制【Pessimistic Concurrency Control,缩写“PCC”,又名“悲观锁”】。

​ 悲观锁,具有强烈的独占排他特性。它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)修改持保守态度。因此,在整个数据处理过程中,将数据处于锁定状态。悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统中实现了加锁机制,也无法保证外部系统不会修改数据)。

​ 之所以叫做悲观锁,是因为这是一种对数据的修改持有悲观态度的并发控制方式。总是假设最坏的情况,每次读取数据的时候都默认其他线程会更改数据,因此需要进行加锁操作,当其他线程想要访问数据时,都需要阻塞挂起。悲观锁的实现:

  1. 传统的关系型数据库使用这种锁机制,比如行锁、表锁、读锁、写锁等,都是在操作之前先上锁(还有事务中的for update语句)。
  2. Java 里面的同步 synchronized 关键字的实现。

悲观锁的类别

​ 悲观锁主要分为共享锁排他锁

  1. 共享锁【shared locks】又称为读锁,简称 S 锁。顾名思义,共享锁就是多个事务对于同一数据可以共享一把锁,都能访问到数据,但是只能读不能修改
  2. 排他锁【exclusive locks】又称为写锁,简称 X 锁。顾名思义,排他锁就是不能与其他锁并存,如果一个事务获取了一个数据行的排他锁,其他事务就不能再获取该行的其他锁,包括共享锁和排他锁。获取排他锁的事务可以对数据行读取和修改。

具体实现

悲观锁的实现,往往依靠数据库提供的锁机制。在数据库中,悲观锁的流程如下:

  1. 在对记录进行修改前,先尝试为该记录加上排他锁(exclusive locks)。
  2. 如果加锁失败,说明该记录正在被修改,那么当前查询可能要等待或者抛出异常。具体响应方式由开发者根据实际需要决定。
  3. 如果成功加锁,那么就可以对记录做修改,事务完成后就会解锁了。
  4. 期间如果有其他对该记录做修改或加排他锁的操作,都会等待解锁或直接抛出异常。

以 MySql Innodb 引擎举例,说明 SQL 中悲观锁的应用,以电商下单扣减库存的过程说明一下悲观锁的使用:

​ 在对 id = 1 的记录修改前,先通过 for update 的方式进行加锁,然后再进行修改。这就是比较典型的悲观锁策略。如果发生并发,同一时间只有一个线程可以开启事务并获得 id=1 的锁其它的事务必须等本次事务提交之后才能执行。这样可以保证当前的数据不会被其它事务修改。使用 select…for update 锁数据,需要注意锁的级别,MySQL InnoDB 默认行级锁。行级锁都是基于索引的,如果一条 SQL 语句用不到索引是不会使用行级锁的,会使用表级锁把整张表锁住,这点需要注意。

for update详解

参考for update - 简书 (jianshu.com)

​ for update 是一种行级锁,又叫排他锁。一旦用户对某个行施加了行级锁,则该用户可以查询也可以更新被加锁的数据行,其它只能查不能改(也不能加共享锁或者排他锁),只能等待锁释放。如果其它用户想更新该表中的数据行,则也必须对该表施加行级锁。即使多个用户对一个表均使用了共享更新,但也不允许两个事务同时对一个表进行更新,真正对表进行更新时,是以独占方式锁表,一直到提交或复原该事务为止。行锁永远是独占方式锁。只有当出现如下之一的条件,才会释放:

1、执行提交(COMMIT)语句
2、退出数据库(LOG OFF)
3、程序停止运行

​ 通常情况下,select 语句是不会对数据加锁,妨碍其他的 DML和DDL 操作。同时,在多版本一致读机制的支持下,select 语句也不会被其他类型语句所阻碍。而select … for update语句是常用的手工加锁语句。在数据库中执行该语句,会对数据库中的表某些行数据进行锁定。在 MySQL 中,如果查询条件带有主键索引,会锁行数据;如果条件不是索引键,会锁表。

​ 由于 InnoDB 预设是 Row-Level Lock,所以只有明确指定主键时,MySQL 才会执行 Row lock (只锁住被选取的记录),否则 MySQL 将会执行 Table Lock(将整个资料表单给锁住)。

注意:
1、FOR UPDATE 仅适用于 InnoDB,且必须在事务处理模块(BEGIN/COMMIT)中才能生效。
2、要测试锁定的状况,可以利用 MySQL 的 Command Mode(命令模式) ,开两个视窗来做测试。
3、Myisam 只支持表级锁。InnerDB 支持行级锁,添加了(行级锁/表级锁)的数据不能被其它事务再锁定,也不被其它事务修改。是表级锁时,不管是否查询到记录,都会锁定表。

小结

​ 悲观并发控制实际上是“先取锁再访问”的保守策略,为数据处理的安全提供了保证。但是在效率方面,处理加锁的机制会让数据库产生额外的开销,还有增加产生死锁的机会。另外还会降低并行性,一个事务如果锁定了某行数据,其他事务就必须等待该事务处理完才可以处理那行数据。

乐观锁(Optimistic Locking)

理解

​ 乐观锁是相对悲观锁而言的,乐观锁假设数据一般情况不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果冲突,则返回给用户异常信息,让用户决定如何去做。乐观锁适用于读多写少的场景,这样可以提高程序的吞吐量。

​ 乐观锁采取了更加宽松的加锁机制。也是为了避免数据库幻读、业务处理时间过长等原因引起数据处理错误的一种机制,但乐观锁不会刻意使用数据库本身的锁机制,而是依据数据本身来保证数据的正确性。乐观锁的实现:

  1. CAS 实现(CompareAndSwap):Java 中java.util.concurrent.atomic包下面的原子变量使用了乐观锁的一种 CAS 实现方式。
  2. 版本号控制:一般是在数据表中加上一个数据版本号 version 字段,表示数据被修改的次数。当数据被修改时,version 值会 +1。当线程 A 要更新数据时,在读取数据的同时也会读取 version 值,在提交更新时,若刚才读取到的 version 值与当前数据库中的 version 值相等时才更新,否则重试更新操作,直到更新成功

具体实现

​ 乐观锁不需要借助数据库的锁机制。主要就是两个步骤:冲突检测数据更新。比较典型的就是 CAS (Compare and Swap)。

​ CAS 即比较并交换。是解决多线程并行情况下使用锁造成性能损耗的一种机制,CAS 操作包含三个操作数——内存位置(V)、预期原值(A)和新值(B)。如果内存位置的值(V)与预期原值(A)相匹配,那么处理器会自动将该位置值更新为新值(B)。否则,处理器不做任何操作。无论哪种情况,它都会在 CAS 指令之前返回该位置的值。CAS 有效地说明了“我认为位置(V)应该包含值(A)。如果包含该值,则将新值(B)放到这个位置;否则,不要更改该位置,只告诉我这个位置现在的值即可”。Java 中,sun.misc.Unsafe 类(魔法类)提供了硬件级别的原子操作来实现这个 CAS。java.util.concurrent包下大量的类都使用了这个 Unsafe.java 类的 CAS 操作。

​ 当多个线程尝试使用 CAS 同时更新同一个变量时,只有其中一个线程能更新变量的值,而其它线程都失败,失败的线程并不会被挂起,而是被告知这次竞争中失败,并可以再次尝试。比如前面的扣减库存问题,通过乐观锁可以实现如下:

​ 在更新之前,先查询一下库存表中当前库存数(quantity),然后在做 update 的时候,以库存数作为一个修改条件。当提交更新的时候,判断数据库表对应记录的当前库存数与第一次取出来的库存数进行比对,如果数据库表当前库存数与第一次取出来的库存数相等,则予以更新,否则认为是过期数据

CAS的问题

1.ABA问题

​ 决定 CAS 是否进行 swap 的判断标准是“当前的值和预期的值是否一致”,如果一致,就认为在此期间这个数值没有发生过变动,这在大多数情况下是没有问题的。

​ 但是在有的业务场景下,我们想确切知道从上一次看到这个值以来到现在,这个值是否发生过变化。例如,这个值假设从 A 变成了 B,再由 B 变回了 A,此时,我们不仅认为它发生了变化,并且会认为它变化了两次。 在这种场景下,我们使用 CAS,就看不到这两次的变化,因为仅判断“当前的值和预期的值是否一致”就是不够的了。

​ CAS 检查的并不是值有没有发生过变化,而是去比较这当前的值和预期值是不是相等,如果变量的值从旧值 A 变成了新值 B 再变回旧值 A,由于最开始的值 A 和现在的值 A 是相等的,所以 CAS 会认为变量的值在此期间没有发生过变化。所以,CAS 并不能检测出在此期间值是不是被修改过,它只能检查出现在的值和最初的值是不是一样。

​ 我们举一个例子:假设第一个线程拿到的初始值是 100,然后进行计算,在计算的过程中,有第二个线程把初始值改为了 200,然后紧接着又有第三个线程把 200 改回了 100。等到第一个线程计算完毕去执行 CAS 的时候,它会比较当前的值是不是等于最开始拿到的初始值 100,此时会发现确实是等于 100,所以线程一就认为在此期间值没有被修改过,就理所当然的把这个 100 改成刚刚计算出来的新值,但实际上,在此过程中已经有其他线程把这个值修改过了,这样就会发生 ABA 问题。

那么如何解决这个问题呢?添加一个版本号就可以解决。

​ 我们在变量值自身之外,再添加一个版本号,那么这个值的变化路径就从 A→B→A 变成了 1A→2B→3A,这样一来,就可以通过对比版本号来判断值是否变化过,这比我们直接去对比两个值是否一致要更靠谱,所以通过这样的思路就可以解决 ABA 的问题了。

​ 在 atomic 包中提供了 AtomicStampedReference 这个类,它是专门用来解决 ABA 问题的,解决思路正是利用版本号,AtomicStampedReference 会维护一种类似<Object,int>的数据结构,其中的 int 就是用于计数的,也就是版本号,它可以对这个对象和 int 版本号同时进行原子更新,从而也就解决了 ABA 问题。因为我们去判断它是否被修改过,不再是以值是否发生变化为标准,而是以版本号是否变化为标准,即使值一样,它们的版本号也是不同的。

2.自旋时间过长

​ CAS 的第二个缺点就是自旋时间过长。由于单次 CAS 不一定能执行成功,所以 CAS 往往是配合着循环来实现的,有的时候甚至是死循环,不停地进行重试,直到线程竞争不激烈的时候,才能修改成功。

​ 可是如果我们的应用场景本身就是高并发的场景,就有可能导致 CAS 一直都操作不成功,这样的话,循环时间就会越来越长。而且在此期间,CPU 资源也是一直在被消耗的,这会对性能产生很大的影响。所以这就要求我们,要根据实际情况来选择是否使用 CAS,在高并发的场景下,通常 CAS 的效率是不高的。

解决办法

(1)如果JVM能支持处理器提供的pause指令,那么效率会有一定的提升。pause指令有两个作用:①它可以延迟流水线执行命令(de-pipeline),使CPU不会消耗过多的执行资源,延迟的时间取决于具体实现的版本,在一些处理器上延迟时间是零。②它可以避免在退出循环的时候因内存顺序冲突(Memory Order Violation)而引起CPU流水线被清空(CPU Pipeline Flush),从而提高CPU的执行效率。

(2)代码层面,破坏掉for死循环,当超过一定时间或者一定次数时,return退出

3.范围不能灵活控制(或者说只能保证一个共享变量的原子操作)

​ 通常我们去执行 CAS 的时候,是针对某一个,而不是多个共享变量的,这个变量可能是 Integer 类型,也有可能是 Long 类型、对象类型等等,但是我们不能针对多个共享变量同时进行 CAS 操作,因为这多个变量之间是独立的,简单的把原子操作组合到一起,并不具备原子性。因此如果我们想对多个对象同时进行 CAS 操作并想保证线程安全的话,是比较困难的。

​ 有一个解决方案,那就是利用一个新的类,来整合刚才这一组共享变量,这个新的类中的多个成员变量就是刚才的那多个共享变量,然后再利用 atomic 包中的 AtomicReference 来把这个新对象整体进行 CAS 操作,这样就可以保证线程安全。

​ 相比之下,如果我们使用其他的线程安全技术,那么调整线程安全的范围就可能变得非常容易,比如我们用 synchronized 关键字时,如果想把更多的代码加锁,那么只需要把更多的代码放到同步代码块里面就可以了。

小结

​ 乐观并发控制相信事务之间的数据竞争(data race)的概率是比较小的,因此尽可能直接做下去,直到提交的时候才去锁定,所以不会产生任何锁和死锁。

posted on   Ari的小跟班  阅读(38)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
点击右上角即可分享
微信分享提示