基础
摘自javaGuide的Java基础常见面试题总结,感谢javaguide!
语法
成员变量与局部变量的区别?
- 语法形式 :从语法形式上看,成员变量是属于类的,而局部变量是在代码块或方法中定义的变量或是方法的参数;成员变量可以被
public
,private
,static
等修饰符所修饰,而局部变量不能被访问控制修饰符及static
所修饰;但是,成员变量和局部变量都能被final
所修饰。 - 存储方式 :从变量在内存中的存储方式来看,如果成员变量是使用
static
修饰的,那么这个成员变量是属于类的,会随着类的加载而加载进方法区,如果没有使用static
修饰,这个成员变量是属于实例的。而对象存在于堆内存,局部变量则存在于栈内存。 - 生存时间 :从变量在内存中的生存时间上看,成员变量是对象的一部分,它随着对象的创建而存在,而局部变量随着方法的调用而自动生成,随着方法的调用结束而消亡。
- 默认值 :从变量是否有默认值来看,成员变量如果没有被赋初始值,则会自动以类型的默认值而赋值(一种情况例外:被
final
修饰的成员变量也必须显式地赋值),而局部变量则不会自动赋值。
字符型常量和字符串常量的区别?
字符型常量就是'a','b'这种用单引号包裹起来的,字符串常量就是用双引号包裹起来的"afdfsd"。
- 形式 : 字符常量是单引号引起的一个字符,字符串常量是双引号引起的 0 个或若干个字符。
- 含义 : 字符常量相当于一个整型值( ASCII 值),可以参加表达式运算; 字符串常量代表一个地址值(该字符串在内存中存放位置)。
- 占内存大小 : 字符常量只占 2 个字节; 字符串常量占若干个字节。
(注意: char
在 Java 中占两个字节)
静态方法为什么不能调用非静态成员?
这个需要结合 JVM 的相关知识,主要原因如下:
- 静态方法是属于类的,在类加载的时候就会分配内存,可以通过类名直接访问。而非静态成员属于实例对象,只有在对象实例化之后才存在,需要通过类的实例对象去访问。
- 在类的非静态成员不存在的时候静态成员就已经存在了,此时调用在内存中还不存在的非静态成员,属于非法操作。
什么是可变长参数?
从 Java5 开始,Java 支持定义可变长参数,所谓可变长参数就是允许在调用方法时传入不定长度的参数。就比如下面的这个 printVariable
方法就可以接受 0 个或者多个参数。
public static void method1(String... args) { //...... }
另外,可变参数只能作为函数的最后一个参数,但其前面可以有也可以没有任何其他参数。
public static void method2(String arg1, String... args) { //...... }
遇到方法重载的情况怎么办呢?会优先匹配固定参数还是可变参数的方法呢?
答案是会优先匹配固定参数的方法,因为固定参数的方法匹配度更高。
我们通过下面这个例子来证明一下。
public class VariableLengthArgument { public static void printVariable(String... args) { for (String s : args) { System.out.println(s); } } public static void printVariable(String arg1, String arg2) { System.out.println(arg1 + arg2); } public static void main(String[] args) { printVariable("a", "b"); printVariable("a", "b", "c", "d"); } }
另外,Java 的可变参数编译后实际会被转换成一个数组,我们看编译后生成的 class
文件就可以看出来了。
基本数据类型
Java 中的几种基本数据类型了解么?
Java 中有 8 种基本数据类型,分别为:
- 6 种数字类型:
- 4 种整数型:
byte
、short
、int
、long
- 2 种浮点型:
float
、double
- 4 种整数型:
- 1 种字符类型:
char
- 1 种布尔型:
boolean
。
这 8 种基本数据类型的默认值以及所占空间的大小如下:
基本类型 | 位数 | 字节 | 默认值 | 取值范围 |
---|---|---|---|---|
byte |
8 | 1 | 0 | -128 ~ 127 |
short |
16 | 2 | 0 | -32768 ~ 32767 |
int |
32 | 4 | 0 | -2147483648 ~ 2147483647 |
long |
64 | 8 | 0L | -9223372036854775808 ~ 9223372036854775807 |
char |
16 | 2 | 'u0000' | 0 ~ 65535 |
float |
32 | 4 | 0f | 1.4E-45 ~ 3.4028235E38 |
double |
64 | 8 | 0d | 4.9E-324 ~ 1.7976931348623157E308 |
boolean |
1 | false | true、false |
对于 boolean
,官方文档未明确定义,它依赖于 JVM 厂商的具体实现。逻辑上理解是占用 1 位,但是实际中会考虑计算机高效存储因素。
另外,Java 的每种基本类型所占存储空间的大小不会像其他大多数语言那样随机器硬件架构的变化而变化。这种所占存储空间大小的不变性是 Java 程序比用其他大多数语言编写的程序更具可移植性的原因之一(《Java 编程思想》2.2 节有提到)。
注意:
- Java 里使用
long
类型的数据一定要在数值后面加上 L,否则将作为整型解析。 char a = 'h'
char :单引号,String a = "hello"
:双引号。
这八种基本类型都有对应的包装类分别为:Byte
、Short
、Integer
、Long
、Float
、Double
、Character
、Boolean
。
基本类型和包装类型的区别?
- 成员变量包装类型不赋值就是
null
,而基本类型有默认值且不是null
。 - 包装类型可用于泛型,而基本类型不可以。
- 基本数据类型的局部变量存放在 Java 虚拟机栈中的局部变量表中,基本数据类型的成员变量(未被
static
修饰 )存放在 Java 虚拟机的堆中。包装类型属于对象类型,我们知道几乎所有对象实例都存在于堆中。 - 相比于对象类型, 基本数据类型占用的空间非常小。
为什么说是几乎所有对象实例呢? 这是因为 HotSpot 虚拟机引入了 JIT 优化之后,会对对象进行逃逸分析,如果发现某一个对象并没有逃逸到方法外部,那么就可能通过标量替换来实现栈上分配,而避免堆上分配内存
⚠️ 注意 : 基本数据类型存放在栈中是一个常见的误区! 基本数据类型的成员变量如果没有被 static
修饰的话(不建议这么使用,应该要使用基本数据类型对应的包装类型),就存放在堆中。如果被static
修饰的话,就放在方法区中。
class BasicTypeVar{ private int x; }
包装类型的缓存机制了解么?
Java 基本数据类型的包装类型的大部分都用到了缓存机制来提升性能。
Byte
,Short
,Integer
,Long
这 4 种包装类默认创建了数值 [-128,127] 的相应类型的缓存数据,Character
创建了数值在 [0,127] 范围的缓存数据,Boolean
直接返回 True
or False
。
Integer 缓存源码:
public static Integer valueOf(int i) { if (i >= IntegerCache.low && i <= IntegerCache.high) return IntegerCache.cache[i + (-IntegerCache.low)]; return new Integer(i); } private static class IntegerCache { static final int low = -128; static final int high; static final Integer cache[]; static { // high value may be configured by property int h = 127; String integerCacheHighPropValue = sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high"); if (integerCacheHighPropValue != null) { try { int i = parseInt(integerCacheHighPropValue); i = Math.max(i, 127); // Maximum array size is Integer.MAX_VALUE h = Math.min(i, Integer.MAX_VALUE - (-low) -1); } catch( NumberFormatException nfe) { // If the property cannot be parsed into an int, ignore it. } } high = h; cache = new Integer[(high - low) + 1]; int j = low; for(int k = 0; k < cache.length; k++) cache[k] = new Integer(j++); // range [-128, 127] must be interned (JLS7 5.1.7) assert IntegerCache.high >= 127; } private IntegerCache() {} }
Character
缓存源码:
public static Character valueOf(char c) { if (c <= 127) { // must cache return CharacterCache.cache[(int)c]; } return new Character(c); } private static class CharacterCache { private CharacterCache(){} static final Character cache[] = new Character[127 + 1]; static { for (int i = 0; i < cache.length; i++) cache[i] = new Character((char)i); } }
Boolean
缓存源码:
public static Boolean valueOf(boolean b) { return (b ? TRUE : FALSE); }
如果超出对应范围仍然会去创建新的对象,缓存的范围区间的大小只是在性能和资源之间的权衡。两种浮点数类型的包装类 Float
,Double
并没有实现缓存机制。
Integer i1 = 33; Integer i2 = 33; System.out.println(i1 == i2);// 输出 true,33在-128~127之间,所以会复用已有的对象 Float i11 = 333f; Float i22 = 333f; System.out.println(i11 == i22);// 输出 false,没有缓存 Double i3 = 1.2; Double i4 = 1.2; System.out.println(i3 == i4);// 输出 false
下面我们来看一下问题。下面的代码的输出结果是 true
还是 false
呢?
Integer i1 = 40; Integer i2 = new Integer(40); System.out.println(i1==i2);//false
Integer i1=40
这一行代码会发生装箱,也就是说这行代码等价于 Integer i1=Integer.valueOf(40)
。因此,i1
直接使用的是缓存中的对象。而Integer i2 = new Integer(40)
会直接创建新的对象。因此,答案是 false
。
记住:所有整型包装类对象之间值的比较,全部使用 equals 方法比较。
因为对于Integer var = ?在-128至127之间的赋值,Integer对象是在IntegerCache.cache产生,会复用已有对象,这个区间内的Integer值可以直接使用进行判断,但是这个区间之外的所有数据,都会在堆上产生,并不会复用已有对象!对于像没有缓存机制的两种浮点数类型的包装类Float和Double,就更不能用来进行判断了。
比如Integer包装类的equals方法
public boolean equals(Object obj) { if (obj instanceof Integer) { return value == ((Integer)obj).intValue(); } return false; }
自动装箱与拆箱了解吗?原理是什么?
什么是自动拆装箱?
- 装箱:将基本类型用它们对应的引用类型包装起来;
- 拆箱:将包装类型转换为基本数据类型;
举例:
Integer i = 10; //装箱 int n = i; //拆箱
从字节码中,我们发现装箱其实就是调用了 包装类的valueOf()
方法,拆箱其实就是调用了 xxxValue()
方法。因此,
Integer i = 10
等价于Integer i = Integer.valueOf(10)
int n = i
等价于int n = i.intValue()
;
注意:如果频繁拆装箱的话,也会严重影响系统的性能。我们应该尽量避免不必要的拆装箱操作。
当基本数据类型和它的包装类进行==比较时,Intger会进行拆箱变成基本数据类型int,这个时候俩个int比较就会只比较值了。
int a =99999; Integer a2 = 99999; Integer b =99999; System.out.println(a==b);//true System.out.println(b.equals(a));//true System.out.println(a2==b);//false
为什么浮点数运算的时候会有精度丢失的风险?
浮点数运算精度丢失代码演示:
float a = 2.0f - 1.9f; float b = 1.8f - 1.7f; System.out.println(a);// 0.100000024 System.out.println(b);// 0.099999905 System.out.println(a == b);// false
为什么会出现这个问题呢?
这个和计算机保存浮点数的机制有很大关系。我们知道计算机是二进制的,而且计算机在表示一个数字时,宽度是有限的,无限循环的小数存储在计算机时,只能被截断,所以就会导致小数精度发生损失的情况。这也就是解释了为什么浮点数没有办法用二进制精确表示。
就比如说十进制下的 0.2 就没办法精确转换成二进制小数:
// 0.2 转换为二进制数的过程为,不断乘以 2,直到不存在小数为止, // 在这个计算过程中,得到的整数部分从上到下排列就是二进制的结果。 0.2 * 2 = 0.4 -> 0 0.4 * 2 = 0.8 -> 0 0.8 * 2 = 1.6 -> 1 0.6 * 2 = 1.2 -> 1 0.2 * 2 = 0.4 -> 0(发生循环) ...
如何解决浮点数运算的精度丢失问题?
BigDecimal
可以实现对浮点数的运算,不会造成精度丢失。通常情况下,大部分需要浮点数精确运算结果的业务场景(比如涉及到钱的场景)都是通过 BigDecimal
来做的。
BigDecimal a = new BigDecimal("1.0"); BigDecimal b = new BigDecimal("0.9"); BigDecimal c = new BigDecimal("0.8"); BigDecimal x = a.subtract(b); BigDecimal y = b.subtract(c); System.out.println(x); /* 0.1 */ System.out.println(y); /* 0.1 */ System.out.println(Objects.equals(x, y)); /* true */
关于 BigDecimal
的详细介绍,可以看看JavaGuide写的这篇文章:BigDecimal 详解。
超过 long 整型的数据应该如何表示?
基本数值类型都有一个表达范围,如果超过这个范围就会有数值溢出的风险。在 Java 中,64 位 long 整型是最大的整数类型。
long l = Long.MAX_VALUE; System.out.println(l + 1); // -9223372036854775808 System.out.println(l + 1 == Long.MIN_VALUE); // true
BigInteger
内部使用 int[]
数组来存储任意大小的整形数据。相对于常规整数类型的运算来说,BigInteger
运算的效率会相对较低。
面向对象基础
创建一个对象用什么运算符?对象实体与对象引用有何不同?
new 运算符,new 创建对象实例(对象实例在堆内存中),对象引用指向对象实例(对象引用存放在栈内存中)。
一个对象引用可以指向 0 个或 1 个对象(一根绳子可以不系气球,也可以系一个气球);一个对象可以有 n 个引用指向它(可以用 n 条绳子系住一个气球)。比如下面的值为22的Integer类的对象就在堆内存中,而对象引用b就在栈内存中。
Integer b = new Integer(22);
对象的相等和引用相等的区别
- 对象的相等一般比较的是内存中存放的内容是否相等。
- 引用相等一般比较的是他们指向的内存地址是否相等。
如果一个类没有声明构造方法,该程序能正确执行吗?
如果一个类没有声明构造方法,也可以执行!因为一个类即使没有声明构造方法也会有默认的不带参数的构造方法。如果我们自己添加了类的构造方法(无论是否有参),Java 就不会再添加默认的无参数的构造方法了,我们一直在不知不觉地使用构造方法,这也是为什么我们在创建对象的时候后面要加一个括号(因为要调用无参的构造方法)。如果我们重载了有参的构造方法,记得都要把无参的构造方法也写出来(无论是否用到),因为这可以帮助我们在创建对象的时候少踩坑。
面向对象三大特征
封装
封装是指把一个对象的状态信息(也就是属性)隐藏在对象内部,不允许外部对象直接访问对象的内部信息。但是可以提供一些可以被外界访问的方法来操作属性。就好像我们看不到挂在墙上的空调的内部的零件信息(也就是属性),但是可以通过遥控器(方法)来控制空调。如果属性不想被外界访问,我们大可不必提供方法给外界访问。但是如果一个类没有提供给外界访问的方法,那么这个类也没有什么意义了。就好像如果没有空调遥控器,那么我们就无法操控空凋制冷,空调本身就没有意义了(当然现在还有很多其他方法 ,这里只是为了举例子)。
public class Student { private int id;//id属性私有化 private String name;//name属性私有化 //获取id的方法 public int getId() {return id;} //设置id的方法 public void setId(int id) {this.id = id;} //获取name的方法 public String getName() {return name;} //设置name的方法 public void setName(String name) {this.name = name;} }
继承
不同类型的对象,相互之间经常有一定数量的共同点。例如,小明同学、小红同学、小李同学,都共享学生的特性(班级、学号等)。同时,每一个对象还定义了额外的特性使得他们与众不同。例如小明的数学比较好,小红的性格惹人喜爱;小李的力气比较大。继承是使用已存在的类的定义作为基础建立新类的技术,新类的定义可以增加新的数据或新的功能,也可以用父类的功能,但不能选择性地继承父类。通过使用继承,可以快速地创建新的类,可以提高代码的重用,程序的可维护性,节省大量创建新类的时间 ,提高我们的开发效率。
关于继承如下 3 点请记住:
- 子类拥有父类对象所有的属性和方法(包括私有属性和私有方法),但是父类中的私有属性和方法子类是无法访问,只是拥有。
- 子类可以拥有自己属性和方法,即子类可以对父类进行扩展。
- 子类可以用自己的方式实现父类的方法。(以后介绍)。
多态
多态,顾名思义,表示一个对象具有多种的状态,具体表现为父类的引用指向子类的实例。
多态的特点:
- 对象类型和引用类型之间具有继承(类)/实现(接口)的关系;
- 引用类型变量发出的方法调用的到底是哪个类中的方法,必须在程序运行期间才能确定;
- 多态不能调用“只在子类存在但在父类不存在”的方法;
- 如果子类重写了父类的方法,真正执行的是子类覆盖的方法,如果子类没有覆盖父类的方法,执行的是父类的方法。
如何理解protected关键字?
接口和抽象类有什么共同点和区别?
共同点 :
- 都不能被实例化。
- 都可以包含抽象方法。
- 都可以有默认实现的方法(Java 8 可以用
default
关键字在接口中定义默认方法)。
区别 :
- 接口主要用于对类的行为进行约束,你实现了某个接口就具有了对应的行为。抽象类主要用于代码复用,强调的是所属关系。
- 一个类只能继承一个类,但是可以实现多个接口。
- 接口中的成员变量只能是
public static final
类型的,不能被修改且必须有初始值,而抽象类的成员变量默认 default,可在子类中被重新定义,也可被重新赋值。
详细解析:
一、抽象类
在了解抽象类之前,先来了解一下抽象方法。抽象方法是一种特殊的方法:它只有声明,而没有具体的实现。抽象方法的声明格式为:abstract void fun();
。抽象方法必须用 abstract 关键字进行修饰。如果一个类含有抽象方法,则称这个类为抽象类,抽象类必须在类前用 abstract 关键字修饰。因为抽象类中含有无具体实现的方法,所以不能用抽象类创建对象。
[public] abstract class ClassName { abstract void fun(); }
从这里可以看出,抽象类就是为了继承而存在的,如果你定义了一个抽象类,却不去继承它,那么等于白白创建了这个抽象类,因为你不能用它来做任何事情。对于一个父类,如果它的某个方法在父类中实现出来没有任何意义,必须根据子类的实际需求来进行不同的实现,那么就可以将这个方法声明为 abstract 方法,此时这个类也就成为 abstract 类了。
包含抽象方法的类称为抽象类,但并不意味着抽象类中只能有抽象方法,它和普通类一样,同样可以拥有成员变量和普通的成员方法。注意,抽象类和普通类的主要有三点区别:
- 1)抽象方法必须为 public 或者 protected(因为如果为 private,则不能被子类继承,子类便无法实现该方法),默认情况下默认为 public。
- 2)抽象类不能用来创建对象;
- 3)如果一个类继承于一个抽象类,则子类必须实现父类的抽象方法。如果子类没有实现父类的抽象方法,则必须将子类也定义为为 abstract 类。
二、接口
接口,英文称作 interface,在软件工程中,接口泛指供别人调用的方法或者函数。从这里,我们可以体会到 Java 语言设计者的初衷,它是对行为的抽象。在 Java 中,定一个接口的形式如下:
[public] interface InterfaceName { }
接口中可以含有 变量和方法。但是要注意,接口中的变量会被隐式地指定为 public static final 变量(并且只能是 public static final变量,用 private 修饰会报编译错误),而方法会被隐式地指定为 public abstract 方法且只能是 public abstract 方法(用其他关键字,比如 private、protected、static、 final 等修饰会报编译错误),并且接口中所有的方法不能有具体的实现(JDK8中可以用default实现默认的实现),也就是说,接口中的方法必须都是抽象方法。从这里可以隐约看出接口和抽象类的区别,接口是一种极度抽象的类型,它比抽象类更加"抽象",并且一般情况下不在接口中定义变量。
要让一个类遵循某组特地的接口需要使用 implements 关键字,具体格式如下:
class ClassName implements Interface1,Interface2,[....]{ }
可以看出,允许一个类遵循多个特定的接口。如果一个非抽象类遵循了某个接口,就必须实现该接口中的所有方法。对于遵循某个接口的抽象类,可以不实现该接口中的抽象方法。
抽象类和接口的区别
1、语法层面上的区别
- 1)抽象类中的成员变量可以是各种类型的,而接口中的成员变量只能是public static final类型的;
- 2)接口中不能含有静态代码块以及静态方法,而抽象类可以有静态代码块和静态方法;
- 3)一个类只能继承一个抽象类,而一个类却可以实现多个接口。
2、设计层面上的区别(关键)
1)抽象类是对一种事物的抽象,即对类抽象,而接口是对行为的抽象。抽象类是对整个类整体进行抽象,包括属性、行为,但是接口却是对类局部(行为)进行抽象。
举个简单的例子,飞机和鸟是不同类的事物,但是它们都有一个共性,就是都会飞。那么在设计的时候,可以将飞机设计为一个类 Airplane,将鸟设计为一个类 Bird,但是不能将 飞行 这个特性也设计为类,因此它只是一个行为特性,并不是对一类事物的抽象描述。此时可以将 飞行 设计为一个接口Fly,包含方法fly( ),然后Airplane和Bird分别根据自己的需要实现Fly这个接口。然后至于有不同种类的飞机,比如战斗机、民用飞机等直接继承Airplane即可,对于鸟也是类似的,不同种类的鸟直接继承Bird类即可。
从这里可以看出,继承是一个 "是不是"的关系,而 接口 实现则是 "有没有"或者说“行不行”的关系。如果一个类继承了某个抽象类,则子类必定是抽象类的种类,而接口实现则是有没有、具备不具备的关系,比如鸟是否能飞(或者是否具备飞行这个特点),能飞行则可以实现这个接口,不能飞行就不实现这个接口。
2)设计层面不同,抽象类作为很多子类的父类,它是一种模板式设计。而接口是一种行为规范,它是一种辐射式设计。
什么是模板式设计?最简单例子,大家都用过 ppt 里面的模板,如果用模板 A 设计了 ppt B 和 ppt C,ppt B 和 ppt C 公共的部分就是模板 A 了,如果它们的公共部分需要改动,则只需要改动模板 A 就可以了,不需要重新对 ppt B 和 ppt C 进行改动。而辐射式设计,比如某个电梯都装了某种报警器,一旦要更新报警器,就必须全部更新。也就是说对于抽象类,如果需要添加新的方法,可以直接在抽象类中添加具体的实现,子类可以不进行变更;而对于接口则不行,如果接口进行了变更,则所有实现这个接口的类都必须进行相应的改动。
下面看一个网上流传最广泛的例子:门和警报的例子:门都有 open() 和 close() 两个动作,此时我们可以定义通过抽象类和接口来定义这个抽象概念:
abstract class Door { public abstract void open(); public abstract void close(); }
或者:
interface Door { public abstract void open(); public abstract void close(); }
但是现在如果我们需要门具有报警 的功能,那么该如何实现?下面提供两种思路:
1)将这三个功能都放在抽象类里面,但是这样一来所有继承于这个抽象类的子类都具备了报警功能,但是有的门并不一定具备报警功能;
2)将这三个功能都放在接口里面,需要用到报警功能的类就需要实现这个接口中的 open( ) 和 close( ),也许这个类根本就不具备 open( ) 和 close( ) 这两个功能,比如火灾报警器。
从这里可以看出, Door 的 open() 、close() 和 alarm() 根本就属于两个不同范畴内的行为,open() 和 close() 属于门本身固有的行为特性,而 alarm() 属于延伸的附加行为。因此最好的解决办法是单独将报警设计为一个接口,包含 alarm() 行为,Door 设计为单独的一个抽象类,包含 open 和 close 两种行为。再设计一个报警门继承 Door 类和实现 Alarm 接口。
interface Alram { void alarm(); } abstract class Door { void open(); void close(); } class AlarmDoor extends Door implements Alarm { void oepn() { //.... } void close() { //.... } void alarm() { //.... } }
深拷贝和浅拷贝区别了解吗?什么是引用拷贝?
关于深拷贝和浅拷贝区别,我这里先给结论:
- 浅拷贝:浅拷贝会在堆上创建一个新的对象(区别于引用拷贝的一点),不过,如果原对象内部的属性是引用类型的话,浅拷贝会直接复制内部对象的引用地址,也就是说拷贝对象和原对象共用同一个内部对象。
- 深拷贝 :深拷贝会完全复制整个对象,包括这个对象所包含的内部对象。
上面的结论没有完全理解的话也没关系,我们来看一个具体的案例!
浅拷贝
浅拷贝的示例代码如下,我们这里实现了 Cloneable
接口,并重写了 clone()
方法。
clone()
方法的实现很简单,直接调用的是父类 Object
的 clone()
方法。
public class Address implements Cloneable{ private String name; // 省略构造函数、Getter&Setter方法 @Override public Address clone() { try { return (Address) super.clone(); } catch (CloneNotSupportedException e) { throw new AssertionError(); } } } public class Person implements Cloneable { private Address address; // 省略构造函数、Getter&Setter方法 @Override public Person clone() { try { Person person = (Person) super.clone(); return person; } catch (CloneNotSupportedException e) { throw new AssertionError(); } } }
测试:
Person person1 = new Person(new Address("武汉")); Person person1Copy = person1.clone(); // true System.out.println(person1.getAddress() == person1Copy.getAddress());
从输出结构就可以看出, person1
的克隆对象和 person1
使用的仍然是同一个 Address
对象。
深拷贝
这里我们简单对 Person
类的 clone()
方法进行修改,连带着要把 Person
对象内部的 Address
对象一起复制。
@Override public Person clone() { try { Person person = (Person) super.clone(); person.setAddress(person.getAddress().clone()); return person; } catch (CloneNotSupportedException e) { throw new AssertionError(); } }
测试 :
Person person1 = new Person(new Address("武汉")); Person person1Copy = person1.clone(); // false System.out.println(person1.getAddress() == person1Copy.getAddress());
从输出结构就可以看出,虽然 person1
的克隆对象和 person1
包含的 Address
对象已经是不同的了。
那什么是引用拷贝呢? 简单来说,引用拷贝就是两个不同的引用指向同一个对象。
javaguide专门画了一张图来描述浅拷贝、深拷贝、引用拷贝:
Java常见类
Object
Object 类的常见方法有哪些?
Object 类是一个特殊的类,是所有类的父类。它主要提供了以下 11 个方法:
/** * native 方法,用于返回当前运行时对象的 Class 对象,使用了 final 关键字修饰,故不允许子类重写。 */ public final native Class<?> getClass() /** * native 方法,用于返回对象的哈希码,主要使用在哈希表中,比如 JDK 中的HashMap。 */ public native int hashCode() /** * 用于比较 2 个对象的内存地址是否相等,String 类对该方法进行了重写以用于比较字符串的值是否相等。 */ public boolean equals(Object obj) /** * native 方法,用于创建并返回当前对象的一份拷贝。 */ protected native Object clone() throws CloneNotSupportedException /** * 返回类的名字实例的哈希码的 16 进制的字符串。建议 Object 所有的子类都重写这个方法。 */ public String toString() /** * native 方法,并且不能重写。唤醒一个在此对象监视器上等待的线程(监视器相当于就是锁的概念)。如果有多个线程在等待只会任意唤醒一个。 */ public final native void notify() /** * native 方法,并且不能重写。跟 notify 一样,唯一的区别就是会唤醒在此对象监视器上等待的所有线程,而不是一个线程。 */ public final native void notifyAll() /** * native方法,并且不能重写。暂停线程的执行。注意:sleep 方法没有释放锁,而 wait 方法释放了锁 ,timeout 是等待时间。 */ public final native void wait(long timeout) throws InterruptedException /** * 多了 nanos 参数,这个参数表示额外时间(以毫微秒为单位,范围是 0-999999)。 所以超时的时间还需要加上 nanos 毫秒。。 */ public final void wait(long timeout, int nanos) throws InterruptedException /** * 跟之前的2个wait方法一样,只不过该方法一直等待,没有超时时间这个概念 */ public final void wait() throws InterruptedException /** * 实例被垃圾回收器回收的时候触发的操作 */ protected void finalize() throws Throwable { }
== 和 equals() 的区别
==
对于基本类型和引用类型的作用效果是不同的:
- 对于基本数据类型来说,
==
比较的是值。 - 对于引用数据类型来说,
==
比较的是对象的内存地址。
因为 Java 只有值传递,所以,对于 == 来说,不管是比较基本数据类型,还是引用数据类型的变量,其本质比较的都是值,只是引用类型变量存的值是对象的地址。
equals()
不能用于判断基本数据类型的变量,只能用来判断两个对象是否相等。equals()
方法存在于Object
类中,而Object
类是所有类的直接或间接父类,因此所有的类都有equals()
方法。
Object
类 equals()
方法:
public boolean equals(Object obj) { return (this == obj); }
equals()
方法存在两种使用情况:
- 类没有重写
equals()
方法 :通过equals()
比较该类的两个对象时,等价于通过“==”比较这两个对象,使用的默认是Object
类equals()
方法。 - 类重写了
equals()
方法 :一般我们都重写equals()
方法来比较两个对象中的属性是否相等;若它们的属性相等,则返回 true(即,认为这两个对象相等)。
举个例子(这里只是为了举例。实际上,你按照下面这种写法的话,像 IDEA 这种比较智能的 IDE 都会提示你将 ==
换成 equals()
):
String a = new String("ab"); // a 为一个引用 String b = new String("ab"); // b为另一个引用,对象的内容一样 String aa = "ab"; // 放在常量池中 String bb = "ab"; // 从常量池中查找 System.out.println(aa == bb);// true System.out.println(a == b);// false System.out.println(a.equals(b));// true System.out.println(42 == 42.0);// true
String
中的 equals
方法是被重写过的,因为 Object
的 equals
方法是比较的对象的内存地址,而 String
的 equals
方法比较的是对象的值。
当创建 String
类型的对象时,虚拟机会在常量池中查找有没有已经存在的值和要创建的值相同的对象,如果有就把它赋给当前引用。如果没有就在常量池中重新创建一个 String
对象。
String
类equals()
方法:
public boolean equals(Object anObject) { if (this == anObject) {//若俩对象的地址相等则直接返回true return true; } if (anObject instanceof String) { String anotherString = (String)anObject; int n = value.length; if (n == anotherString.value.length) { char v1[] = value;//使用基本数据类型char //String类内部有个private final char value[];内部方法equals通过对象.value来获得char数组。 //也可以注意到String的value是被private和final修饰的,所以String对象一旦创建了,其值就不能被修改了 char v2[] = anotherString.value; int i = 0; while (n-- != 0) { if (v1[i] != v2[i]) return false; i++; } return true; } } return false; }
hashCode() 有什么用?
hashCode()
的作用是获取哈希码(int
整数),也称为散列码。这个哈希码的作用是确定该对象在哈希表中的索引位置。
hashCode()
定义在 JDK 的 Object
类中,这就意味着 Java 中的任何类都包含有 hashCode()
函数。另外需要注意的是: Object
的 hashCode()
方法是本地方法,也就是用 C 语言或 C++ 实现的,该方法通常用来将对象的内存地址转换为整数之后返回。
public native int hashCode();
散列表存储的是键值对(key-value),它的特点是:能根据“键”快速的检索出对应的“值”。这其中就利用到了散列码!(可以快速找到所需要的对象
为什么要有 hashCode?
我们以“HashSet
如何检查重复”为例子来说明为什么要有 hashCode
?
下面这段内容摘自我的 Java 启蒙书《Head First Java》:
当你把对象加入
HashSet
时,HashSet
会先计算对象的hashCode
值来判断对象加入的位置,同时也会与其他已经加入的对象的hashCode
值作比较,如果没有相符的hashCode
,HashSet
会假设对象没有重复出现。但是如果发现有相同hashCode
值的对象,这时会调用equals()
方法来检查hashCode
相等的对象是否真的相同。如果两者相同,HashSet
就不会让其加入操作成功。如果不同的话,就会重新散列到其他位置。这样我们就大大减少了equals
的次数,相应就大大提高了执行速度。
其实, hashCode()
和 equals()
都是用于比较两个对象是否相等。
那为什么 JDK 还要同时提供这两个方法呢?
这是因为在一些容器(比如 HashMap
、HashSet
)中,有了 hashCode()
之后,判断元素是否在对应容器中的效率会更高(参考添加元素进HashSet
的过程)!
我们在前面也提到了添加元素进HashSet
的过程,如果 HashSet
在对比的时候,同样的 hashCode
有多个对象,它会继续使用 equals()
来判断是否真的相同。也就是说 hashCode
帮助我们大大缩小了查找成本。
那为什么不只提供 hashCode()
方法呢?
这是因为两个对象的hashCode
值相等并不代表两个对象就相等。
那为什么两个对象有相同的 hashCode
值,它们也不一定是相等的?
因为 hashCode()
所使用的哈希算法也许刚好会让多个对象传回相同的哈希值。越糟糕的哈希算法越容易碰撞,但这也与数据值域分布的特性有关(所谓哈希碰撞也就是指的是不同的对象得到相同的 hashCode
)。
总结下来就是 :
- 如果两个对象的
hashCode
值相等,那这两个对象不一定相等(哈希碰撞)。 - 如果两个对象的
hashCode
值相等并且equals()
方法也返回true
,我们才认为这两个对象相等。 - 如果两个对象的
hashCode
值不相等,我们就可以直接认为这两个对象不相等。
相信大家看了我前面对 hashCode()
和 equals()
的介绍之后,下面这个问题已经难不倒你们了。
为什么重写 equals() 时必须重写 hashCode() 方法?
因为两个相等的对象的 hashCode
值必须是相等。也就是说如果 equals
方法判断两个对象是相等的,那这两个对象的 hashCode
值也要相等。
如果重写 equals()
时没有重写 hashCode()
方法的话就可能会导致 equals
方法判断是相等的两个对象,hashCode
值却不相等。
思考 :重写 equals()
时没有重写 hashCode()
方法的话,使用 HashMap
可能会出现什么问题。
更多关于 hashCode()
和 equals()
的内容可以查看:Java hashCode() 和 equals()的若干问题解答
String
String、StringBuffer、StringBuilder 的区别?
可变性
String
是不可变的(后面会详细分析原因)。
StringBuilder
与 StringBuffer
都继承自 AbstractStringBuilder
类,在 AbstractStringBuilder
中也是使用字符数组保存字符串,不过没有使用 final
和 private
关键字修饰,最关键的是这个 AbstractStringBuilder
类还提供了很多修改字符串的方法比如 append
方法。
abstract class AbstractStringBuilder implements Appendable, CharSequence { char[] value; public AbstractStringBuilder append(String str) { if (str == null) return appendNull(); int len = str.length(); ensureCapacityInternal(count + len); str.getChars(0, len, value, count); count += len; return this; } //... }
线程安全性
String
中的对象是不可变的,也就可以理解为常量,线程安全。AbstractStringBuilder
是 StringBuilder
与 StringBuffer
的公共父类,定义了一些字符串的基本操作,如 expandCapacity
、append
、insert
、indexOf
等公共方法。StringBuffer
对方法加了同步锁或者对调用的方法加了同步锁,所以是线程安全的。StringBuilder
并没有对方法进行加同步锁,所以是非线程安全的。
性能
每次对 String
类型进行改变(比如+=操作)的时候,都会生成一个新的 String
对象,然后将指针指向新的 String
对象。StringBuffer
每次都会对 StringBuffer
对象本身进行操作,而不是生成新的对象并改变对象引用。相同情况下使用 StringBuilder
相比使用 StringBuffer
仅能获得 10%~15% 左右的性能提升,但却要冒多线程不安全的风险。
对于三者使用的总结:
- 操作少量的数据: 适用
String
- 单线程操作字符串缓冲区下操作大量数据: 适用
StringBuilder
- 多线程操作字符串缓冲区下操作大量数据: 适用
StringBuffer
,因为线程安全!
String 为什么是不可变的?
String
类中使用 final
关键字修饰字符数组来保存字符串,所以String
对象是不可变的。这样理解不透彻,这并不是String不可变的根本原因。
🐛 修正 : 我们知道被 final
关键字修饰的类不能被继承,修饰的方法不能被重写,修饰的变量是基本数据类型则值不能改变,修饰的变量是引用类型则不能再指向其他对象。
因此,final
关键字修饰的数组保存字符串并不是 String
不可变的根本原因,因为这个数组保存的字符串是可变的(final
修饰引用类型变量的情况),即地址不变,地址上的内容发生了改变。举个例子:
虽然value是不可变,也只是value这个引用地址不可变。挡不住Array数组是可变的事实。Array的数据结构看下图
也就是说Array变量只是stack上的一个引用,数组的本体结构在heap堆。String类里的value用final修饰,只是说stack里的这个叫value的引用地址不可变。没有说堆里array本身数据不可变。看下面这个例子,
final int[] value={1,2,3}; int[] another={4,5,6}; value=another; //编译器报错,final不可变
value用final修饰,编译器不允许我把value指向堆区另一个地址。但如果我直接对数组元素动手,分分钟搞定。
final int[] value={1,2,3}; value[2]=100; //这时候数组里已经是{1,2,100}
String
真正不可变有下面几点原因:
- 保存字符串的数组被
final
修饰且为私有的,并且String
类没有提供/暴露修改这个字符串的方法。 String
类被final
修饰导致其不能被继承,进而避免了子类破坏String
不可变。
在 Java 9 之后,String
、StringBuilder
与 StringBuffer
的实现改用 byte
数组存储字符串。
Java 9 为何要将 String
的底层实现由 char[]
改成了 byte[]
?
新版的 String 其实支持两个编码方案: Latin-1(ISO-8859-1的别名) 和 UTF-16。如果字符串中包含的汉字没有超过 Latin-1 可表示范围内的字符,那就会使用 Latin-1 作为编码方案。Latin-1 编码方案下,byte
占一个字节(8 位),char
占用 2 个字节(16),byte
相较 char
节省一半的内存空间。
JDK 官方就说了绝大部分字符串对象只包含 Latin-1 可表示的字符。
字符串拼接用“+” 还是 StringBuilder?
Java 语言本身并不支持运算符重载,“+”和“+=”是专门为 String 类重载过的运算符,也是 Java 中仅有的两个重载过的运算符。
String str1 = "he"; String str2 = "llo"; String str3 = "world"; String str4 = str1 + str2 + str3;
上面的代码对应的字节码如下:
可以看出,字符串对象通过“+”的字符串拼接方式,实际上是通过 StringBuilder
调用 append()
方法实现的,拼接完成之后调用 toString()
得到一个 String
对象 。
不过,在循环内使用“+”进行字符串的拼接的话,存在比较明显的缺陷:编译器不会创建单个 StringBuilder
以复用,会导致创建过多的 StringBuilder
对象。StringBuilder
对象是在循环内部被创建的,这意味着每循环一次就会创建一个 StringBuilder
对象。如果直接使用 StringBuilder
对象进行字符串拼接的话,就不会存在这个问题了。
String#equals() 和 Object#equals() 有何区别?
String
中的 equals
方法是被重写过的,比较的是 String 字符串的值是否相等。 Object
的 equals
方法是比较的对象的内存地址。
字符串常量池的作用了解吗?
字符串常量池 是 JVM 为了提升性能和减少内存消耗针对字符串(String 类)专门开辟的一块区域,主要目的是为了避免字符串的重复创建。
// 在堆中创建字符串对象”ab“,将字符串对象”ab“的引用保存在字符串常量池中 String aa = "ab"; // 直接返回字符串常量池中字符串对象”ab“的引用 String bb = "ab"; System.out.println(aa==bb);// true
String s1 = new String("abc");这句话创建了几个字符串对象?
会创建 1 或 2 个字符串对象。
1、如果字符串常量池中不存在字符串对象“abc”的引用,那么会在堆中创建 2 个字符串对象“abc”。
示例代码(JDK 1.8):
String s1 = new String("abc");
对应的字节码:
ldc
命令用于判断字符串常量池中是否保存了对应的字符串对象的引用,如果保存了的话直接返回,如果没有保存的话,会在堆中创建对应的字符串对象并将该字符串对象的引用保存到字符串常量池中。
2.如果字符串常量池中已存在字符串对象“abc”的引用,则只会在堆中创建 1 个字符串对象“abc”。
示例代码(JDK 1.8):
// 字符串常量池中已存在字符串对象“abc”的引用s1 String s1 = "abc"; // 下面这段代码只会在堆中创建 1 个字符串对象“abc” String s2 = new String("abc");
对应的字节码:
7 这个位置的 ldc
命令不会在堆中创建新的字符串对象“abc”,这是因为 0 这个位置已经执行了一次 ldc
命令,已经在堆中创建过一次字符串对象“abc”了。7 这个位置执行 ldc
命令会直接返回字符串常量池中字符串对象“abc”对应的引用。
intern 方法有什么作用?
String.intern()
是一个 native(本地)方法,其作用是将指定的字符串对象的引用保存在字符串常量池中,可以简单分为两种情况:
- 如果字符串常量池中保存了对应的字符串对象的引用,就直接返回该引用。
- 如果字符串常量池中没有保存了对应的字符串对象的引用,那就在常量池中创建一个指向该字符串对象的引用并返回。
示例代码(JDK 1.8) :
// 在堆中创建字符串对象”Java“ // 将字符串对象”Java“的引用保存在字符串常量池中 String s1 = "Java"; // 直接返回字符串常量池中字符串对象”Java“对应的引用 String s2 = s1.intern(); // 会在堆中在单独创建一个字符串对象 String s3 = new String("Java"); // 直接返回字符串常量池中字符串对象”Java“对应的引用 String s4 = s3.intern(); // s1 和 s2 指向的是堆中的同一个对象 System.out.println(s1 == s2); // true // s3 和 s4 指向的是堆中不同的对象 System.out.println(s3 == s4); // false // s1 和 s4 指向的是堆中的同一个对象,因为s4调用了intern,返回的是常量池中"Java"的引用 System.out.println(s1 == s4); //true
String 类型的变量和常量做“+”运算时发生了什么?
先来看字符串不加 final
关键字拼接的情况(JDK1.8):
String str1 = "str"; String str2 = "ing"; String str3 = "str" + "ing"; String str4 = str1 + str2; String str5 = "string"; System.out.println(str3 == str4);//false System.out.println(str3 == str5);//true System.out.println(str4 == str5);//false
注意 :比较 String 字符串的值是否相等,可以使用 equals()
方法。 String
中的 equals
方法是被重写过的。 Object
的 equals
方法是比较的对象的内存地址,而 String
的 equals
方法比较的是字符串的值是否相等。如果你使用 ==
比较两个字符串是否相等的话,IDEA 还是提示你使用 equals()
方法替换。如果上面的比较都换成equals的话,那得到的结果都会是true了。
对于编译期可以确定值的字符串,也就是常量字符串 ,jvm 会将其存入字符串常量池。并且,字符串常量拼接得到的字符串常量在编译阶段就已经被存放字符串常量池,这个得益于编译器的优化。
在编译过程中,Javac 编译器(下文中统称为编译器)会进行一个叫做 常量折叠(Constant Folding) 的代码优化。《深入理解 Java 虚拟机》中是也有介绍到。常量折叠会把常量表达式的值求出来作为常量嵌在最终生成的代码中,这是 Javac 编译器会对源代码做的极少量优化措施之一(代码优化几乎都在即时编译器中进行)。
对于 String str3 = "str" + "ing";
编译器会给你优化成 String str3 = "string";
。
并不是所有的常量都会进行折叠,只有编译器在程序编译期就可以确定值的常量才可以:
- 基本数据类型(
byte
、boolean
、short
、char
、int
、float
、long
、double
)以及字符串常量。 final
修饰的基本数据类型和字符串变量- 字符串通过 “+”拼接得到的字符串、基本数据类型之间算数运算(加减乘除)、基本数据类型的位运算(<<、>>、>>> )
引用的值在程序编译期是无法确定的,编译器无法对其进行优化。
对象引用和“+”的字符串拼接方式,实际上是通过 StringBuilder
调用 append()
方法实现的,拼接完成之后调用 toString()
得到一个 String
对象 。
String str4 = new StringBuilder().append(str1).append(str2).toString();
我们在平时写代码的时候,尽量避免多个字符串对象拼接,因为这样会重新创建对象。如果需要改变字符串的话,可以使用 StringBuilder
或者 StringBuffer
。
不过,字符串使用 final
关键字声明之后,可以让编译器当做常量来处理。
示例代码:
final String str1 = "str"; final String str2 = "ing"; // 下面两个表达式其实是等价的 String c = "str" + "ing";// 常量池中的对象 String d = str1 + str2; // 常量池中的对象 System.out.println(c == d);// true
被 final
关键字修饰之后的 String
会被编译器当做常量来处理,编译器在程序编译期就可以确定它的值,其效果就相当于访问常量。
如果 ,编译器在运行时才能知道其确切值的话,就无法对其优化。
示例代码(str2
在运行时才能确定其值):
final String str1 = "str"; final String str2 = getStr(); String c = "str" + "ing";// 常量池中的对象 String d = str1 + str2; // 在堆上创建的新的对象 System.out.println(c == d);// false public static String getStr() { return "ing"; }
异常
Java 异常类层次结构图概览 :
Exception 和 Error 有什么区别?
在 Java 中,所有的异常都有一个共同的祖先 java.lang
包中的 Throwable
类。Throwable
类有两个重要的子类:
Exception
:程序本身可以处理的异常,可以通过catch
来进行捕获。Exception
又可以分为 Checked Exception (受检查异常,必须处理) 和 Unchecked Exception (不受检查异常,可以不处理)。Error
:Error
属于程序无法处理的错误 ,不建议通过catch
捕获 。例如 Java 虚拟机运行错误(Virtual MachineError
)、虚拟机内存不够错误(OutOfMemoryError
)、类定义错误(NoClassDefFoundError
)等 。这些异常发生时,Java 虚拟机(JVM)一般会选择线程终止。
Checked Exception 和 Unchecked Exception 有什么区别?
Checked Exception 即 受检查异常 ,Java 代码在编译过程中,如果受检查异常没有被 catch
或者throws
关键字处理的话,就没办法通过编译(Unhandled exception)。
比如下面这段 IO 操作的代码:
除了RuntimeException
及其子类以外,其他的Exception
类及其子类都属于受检查异常 。常见的受检查异常有: IO 相关的异常、ClassNotFoundException
、SQLException
...。
Unchecked Exception 即 不受检查异常 ,Java 代码在编译过程中 ,我们即使不处理不受检查异常也可以正常通过编译。
RuntimeException
及其子类都统称为非受检查异常,常见的有(建议记下来,日常开发中会经常用到):
NullPointerException
(空指针错误,遇到的最多,假如说所有可能发生空指针异常的地方都得像受检查异常那样catch或者throw,那么实际开发中就会变得不方便)IllegalArgumentException
(参数错误比如方法入参类型错误)NumberFormatException
(字符串转换为数字格式错误,IllegalArgumentException
的子类)ArrayIndexOutOfBoundsException
(数组越界错误)ClassCastException
(类型转换错误)ArithmeticException
(算术错误)SecurityException
(安全错误比如权限不够)UnsupportedOperationException
(不支持的操作错误比如重复创建同一用户)
Throwable 类常用方法有哪些?
String getMessage()
: 返回异常发生时的简要描述String toString()
: 返回异常发生时的详细信息String getLocalizedMessage()
: 返回异常对象的本地化信息。使用Throwable
的子类覆盖这个方法,可以生成本地化信息。如果子类没有覆盖该方法,则该方法返回的信息与getMessage()
返回的结果相同void printStackTrace()
: 在控制台上打印Throwable
对象封装的异常信
try-catch-finally 如何使用?
try
块 : 用于捕获异常。其后可接零个或多个catch
块,如果没有catch
块,则必须跟一个finally
块。catch
块 : 用于处理 try 捕获到的异常。finally
块 : 无论是否捕获或处理异常,finally
块里的语句都会被执行。当在try
块或catch
块中遇到return
语句时,finally
语句块将在方法返回之前被执行。
注意:不要在 finally 语句块中使用 return! 当 try 语句和 finally 语句中都有 return 语句时,try 语句块中的 return 语句会被忽略。这是因为 try 语句中的 return 返回值会先被暂存在一个本地变量中,当执行到 finally 语句中的 return 之后,这个本地变量的值就变为了 finally 语句中的 return 返回值。
finally 中的代码一定会执行吗?
不一定的!在某些情况下,finally 中的代码不会被执行。
就比如说 finally 之前虚拟机被终止运行的话,finally 中的代码就不会被执行。
try { System.out.println("Try to do something"); throw new RuntimeException("RuntimeException"); } catch (Exception e) { System.out.println("Catch Exception -> " + e.getMessage()); System.exit(1);// 终止当前正在运行的Java虚拟机 } finally { System.out.println("Finally"); }
另外,在以下 2 种特殊情况下,finally
块的代码也不会被执行:
- 程序所在的线程死亡。
- 关闭 CPU。
如何使用 try-with-resources
代替try-catch-finally
?
- 适用范围(资源的定义): 任何实现
java.lang.AutoCloseable
或者java.io.Closeable
的对象 - 关闭资源和 finally 块的执行顺序: 在
try-with-resources
语句中,任何 catch 或 finally 块在声明的资源关闭后运行。
《Effective Java》中明确指出:
面对必须要关闭的资源,我们总是应该优先使用
try-with-resources
而不是try-finally
。随之产生的代码更简短,更清晰,产生的异常对我们也更有用。try-with-resources
语句让我们更容易编写必须要关闭的资源的代码,若采用try-finally
则几乎做不到这点。
Java 中类似于InputStream
、OutputStream
、Scanner
、PrintWriter
等的资源都需要我们调用close()
方法来手动关闭,一般情况下我们都是通过try-catch-finally
语句来实现这个需求,如下:
//读取文本文件的内容 Scanner scanner = null; try { scanner = new Scanner(new File("D://read.txt")); while (scanner.hasNext()) { System.out.println(scanner.nextLine()); } } catch (FileNotFoundException e) { e.printStackTrace(); } finally { if (scanner != null) { scanner.close(); } }
使用 Java 7 之后的 try-with-resources
语句改造上面的代码:
注意:只有实现了java.lang.AutoCloseable
或者 java.io.Closeable
的对象才能放到try后面的()中。
try (Scanner scanner = new Scanner(new File("test.txt"))) { while (scanner.hasNext()) { System.out.println(scanner.nextLine()); } } catch (FileNotFoundException fnfe) { fnfe.printStackTrace(); }
当然多个资源需要关闭的时候,使用 try-with-resources
实现起来也非常简单,如果你还是用try-catch-finally
可能会带来很多问题。
通过使用分号分隔,可以在try-with-resources
块中声明多个资源。
try (BufferedInputStream bin = new BufferedInputStream(new FileInputStream(new File("test.txt"))); BufferedOutputStream bout = new BufferedOutputStream(new FileOutputStream(new File("out.txt")))) { int b; while ((b = bin.read()) != -1) { bout.write(b); } } catch (IOException e) { e.printStackTrace(); }
异常使用有哪些需要注意的地方?
- 不要把异常定义为静态变量,因为这样会导致异常栈信息错乱。每次手动抛出异常,我们都需要手动 new 一个异常对象抛出。
- 抛出的异常信息一定要有意义。
- 建议抛出更加具体的异常比如字符串转换为数字格式错误的时候应该抛出
NumberFormatException
而不是其父类IllegalArgumentException
。 - 使用日志打印异常之后就不要再抛出异常了(两者不要同时存在一段代码逻辑中)。
泛型
泛型的使用方式有哪几种?
泛型一般有三种使用方式:泛型类、泛型接口、泛型方法。
1.泛型类:
//此处T可以随便写为任意标识,常见的如T、E、K、V等形式的参数常用于表示泛型 //在实例化泛型类时,必须指定T的具体类型 public class Generic<T>{ private T key; public Generic(T key) {this.key = key;} public T getKey(){return key;} }
如何实例化泛型类:
Generic<Integer> genericInteger = new Generic<Integer>(123456);
2.泛型接口 :
public interface Generator<T> { public T method(); }
实现泛型接口,不指定类型:
class GeneratorImpl<T> implements Generator<T>{ @Override public T method() {return null;} }
实现泛型接口,指定类型:
lass GeneratorImpl<T> implements Generator<String>{ @Override public String method() {return "hello";} }
3.泛型方法 :
public static < E > void printArray( E[] inputArray ) { for ( E element : inputArray ){ System.out.printf( "%s ", element ); } System.out.println(); }
使用:
// 创建不同类型数组: Integer, Double 和 Character Integer[] intArray = { 1, 2, 3 }; String[] stringArray = { "Hello", "World" }; printArray( intArray ); printArray( stringArray );
注意: public static < E > void printArray( E[] inputArray )
一般被称为静态泛型方法;在 java 中泛型只是一个占位符,必须在传递类型后才能使用。类在实例化时才能真正的传递类型参数,由于静态方法的加载先于类的实例化,也就是说类中的泛型还没有传递真正的类型参数,静态的方法的加载就已经完成了,所以静态泛型方法是没有办法使用类上声明的泛型的。只能使用自己声明的 <E>
项目中哪里用到了泛型?
- 自定义接口通用返回结果
CommonResult<T>
通过参数T
可根据具体的返回类型动态指定结果的数据类型 - 定义
Excel
处理类ExcelUtil<T>
用于动态指定Excel
导出的数据类型 - 构建集合工具类(参考
Collections
中的sort
,binarySearch
方法)。
反射
关于反射的详细解读,请看这篇文章 Java 反射机制详解 。
何谓反射?
反射之所以被称为框架的灵魂,主要是因为它赋予了我们在运行时分析类以及执行类中方法的能力。通过反射你可以获取任意一个类的所有属性和方法,你还可以调用这些方法和属性。
反射的优缺点?
反射可以让我们的代码更加灵活、为各种框架提供开箱即用的功能提供了便利。
不过,反射让我们在运行时有了分析操作类的能力的同时,也增加了安全问题,比如可以无视泛型参数的安全检查(泛型参数的安全检查发生在编译时)。另外,反射的性能也要稍差点,不过,对于框架来说实际是影响不大的。
反射的应用场景?
像咱们平时大部分时候都是在写业务代码,很少会接触到直接使用反射机制的场景。但是!这并不代表反射没有用。相反,正是因为反射,你才能这么轻松地使用各种框架。像 Spring/Spring Boot、MyBatis 等等框架中都大量使用了反射机制。
这些框架中也大量使用了动态代理,而动态代理的实现也依赖反射。
比如下面是通过 JDK 实现动态代理的示例代码,其中就使用了反射类 Method
来调用指定的方法。
public class DebugInvocationHandler implements InvocationHandler { /** * 代理类中的真实对象 */ private final Object target; public DebugInvocationHandler(Object target) { this.target = target; } public Object invoke(Object proxy, Method method, Object[] args) throws InvocationTargetException, IllegalAccessException { System.out.println("before method " + method.getName()); Object result = method.invoke(target, args); System.out.println("after method " + method.getName()); return result; } }
另外,像 Java 中的一大利器 注解 的实现也用到了反射。
为什么你使用 Spring 的时候 ,一个@Component
注解就声明了一个类为 Spring Bean 呢?为什么你通过一个 @Value
注解就读取到配置文件中的值呢?究竟是怎么起作用的呢?
这些都是因为你可以基于反射分析类,然后获取到类/属性/方法/方法的参数上的注解。你获取到注解之后,就可以做进一步的处理。
注解
何谓注解?
Annotation
(注解) 是 Java5 开始引入的新特性,可以看作是一种特殊的注释,主要用于修饰类、方法或者变量,提供某些信息供程序在编译或者运行时使用。
注解本质是一个继承了Annotation
的特殊接口:
@Target(ElementType.METHOD) @Retention(RetentionPolicy.SOURCE) public @interface Override { } public interface Override extends Annotation{ }
JDK 提供了很多内置的注解(比如 @Override
、@Deprecated
),同时,我们还可以自定义注解。
注解的解析方法有哪几种?
注解只有被解析之后才会生效,常见的解析方法有两种:
- 编译期直接扫描 :编译器在编译 Java 代码的时候扫描对应的注解并处理,比如某个方法使用
@Override
注解,编译器在编译的时候就会检测当前的方法是否重写了父类对应的方法。 - 运行期通过反射处理 :像框架中自带的注解(比如 Spring 框架的
@Value
、@Component
)都是通过反射来进行处理的
SPI
关于 SPI 的详细解读,请看这篇文章 Java SPI 机制详解 。
何谓 SPI?
SPI 即 Service Provider Interface ,字面意思就是:“服务提供者的接口”,javaguide的理解是:专门提供给服务提供者或者扩展框架功能的开发者去使用的一个接口。
SPI 将服务接口和具体的服务实现分离开来,将服务调用方和服务实现者解耦,能够提升程序的扩展性、可维护性。修改或者替换服务实现并不需要修改调用方。
很多框架都使用了 Java 的 SPI 机制,比如:Spring 框架、数据库加载驱动、日志接口、以及 Dubbo 的扩展实现等等。
SPI 和 API 有什么区别?
那 SPI 和 API 有啥区别?
说到 SPI 就不得不说一下 API 了,从广义上来说它们都属于接口,而且很容易混淆。下面先用一张图说明一下:
一般模块之间都是通过通过接口进行通讯,那我们在服务调用方和服务实现方(也称服务提供者)之间引入一个“接口”。
当实现方提供了接口和实现,我们可以通过调用实现方的接口从而拥有实现方给我们提供的能力,这就是 API ,这种接口和实现都是放在实现方的。
当接口存在于调用方这边时,就是 SPI ,由接口调用方确定接口规则,然后由不同的厂商去根据这个规则对这个接口进行实现,从而提供服务。
举个通俗易懂的例子:公司 H 是一家科技公司,新设计了一款芯片,然后现在需要量产了,而市面上有好几家芯片制造业公司,这个时候,只要 H 公司指定好了这芯片生产的标准(定义好了接口标准),那么这些合作的芯片公司(服务提供者)就按照标准交付自家特色的芯片(提供不同方案的实现,但是给出来的结果是一样的)。
SPI 的优缺点?
通过 SPI 机制能够大大地提高接口设计的灵活性,但是 SPI 机制也存在一些缺点,比如:
- 需要遍历加载所有的实现类,不能做到按需加载,这样效率还是相对较低的。
- 当多个
ServiceLoader
同时load
时,会有并发问题。
I/O
什么是序列化?什么是反序列化?
如果我们需要持久化 Java 对象比如将 Java 对象保存在文件中,或者在网络传输 Java 对象,这些场景都需要用到序列化。
简单来说:
- 序列化: 将数据结构或对象转换成二进制字节流的过程
- 反序列化:将在序列化过程中所生成的二进制字节流转换成数据结构或者对象的过程
对于 Java 这种面向对象编程语言来说,我们序列化的都是对象(Object)也就是实例化后的类(Class),但是在 C++这种半面向对象的语言中,struct(结构体)定义的是数据结构类型,而 class 对应的是对象类型。
维基百科是如是介绍序列化的:
序列化(serialization)在计算机科学的数据处理中,是指将数据结构或对象状态转换成可取用格式(例如存成文件,存于缓冲,或经由网络中发送),以留待后续在相同或另一台计算机环境中,能恢复原先状态的过程。依照序列化格式重新获取字节的结果时,可以利用它来产生与原始对象相同语义的副本。对于许多对象,像是使用大量引用的复杂对象,这种序列化重建的过程并不容易。面向对象中的对象序列化,并不概括之前原始对象所关系的函数。这种过程也称为对象编组(marshalling)。从一系列字节提取数据结构的反向操作,是反序列化(也称为解编组、deserialization、unmarshalling)。
综上:序列化的主要目的是通过网络传输对象或者说是将对象存储到文件系统、数据库、内存中。
如果有些字段不想进行序列化怎么办?
对于不想进行序列化的变量,使用 transient
关键字修饰。
transient
关键字的作用是:阻止实例中那些用此关键字修饰的的变量序列化;当对象被反序列化时,被 transient
修饰的变量值不会被持久化和恢复。
关于 transient
还有几点注意:
transient
只能修饰变量,不能修饰类和方法。transient
修饰的变量,在反序列化后变量值将会被置成类型的默认值。例如,如果是修饰int
类型,那么反序列后结果就是0
。static
变量因为不属于任何对象(Object),所以无论有没有transient
关键字修饰,均不会被序列化。
Java IO 流了解吗?
IO 即 Input/Output
,输入和输出。数据输入到计算机内存的过程即输入,反之输出到外部存储(比如数据库,文件,远程主机)的过程即输出。数据传输过程类似于水流,因此称为 IO 流。IO 流在 Java 中分为输入流和输出流,而根据数据的处理方式又分为字节流和字符流。
Java IO 流的 40 多个类都是从如下 4 个抽象类基类中派生出来的。
InputStream
/Reader
: 所有的输入流的基类,前者是字节输入流,后者是字符输入流。OutputStream
/Writer
: 所有输出流的基类,前者是字节输出流,后者是字符输出流。
I/O 流为什么要分为字节流和字符流呢?
问题本质想问:不管是文件读写还是网络发送接收,信息的最小存储单元都是字节,那为什么 I/O 流操作要分为字节流操作和字符流操作呢?
个人认为主要有两点原因:
- 字符流是由 Java 虚拟机将字节转换得到的,这个过程还算是比较耗时;
- 如果我们不知道编码类型的话,使用字节流的过程中很容易出现乱码问题。
语法糖
什么是语法糖?
语法糖(Syntactic sugar) 代指的是编程语言为了方便程序员开发程序而设计的一种特殊语法,这种语法对编程语言的功能并没有影响。实现相同的功能,基于语法糖写出来的代码往往更简单简洁且更易阅读。
举个例子,Java 中的 for-each
就是一个常用的语法糖,其原理其实就是基于普通的 for 循环和迭代器。
String[] strs = {"JavaGuide", "公众号:JavaGuide", "博客:https://javaguide.cn/"}; for (String s : strs) { System.out.println(s); }
不过,JVM 其实并不能识别语法糖,Java 语法糖要想被正确执行,需要先通过编译器进行解糖,也就是在程序编译阶段将其转换成 JVM 认识的基本语法。这也侧面说明,Java 中真正支持语法糖的是 Java 编译器而不是 JVM。如果你去看com.sun.tools.javac.main.JavaCompiler
的源码,你会发现在compile()
中有一个步骤就是调用desugar()
,这个方法就是负责解语法糖的实现的。
Java 中有哪些常见的语法糖?
Java 中最常用的语法糖主要有泛型、自动拆装箱、变长参数、枚举、内部类、增强 for 循环、try-with-resources 语法、lambda 表达式等。
关于这些语法糖的详细解读,请看这篇文章 Java 语法糖详解 。li
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)