[Hadoop] MapReduce

转载:https://www.cnblogs.com/jesse123/p/11733031.html

MapReduce计算框架

既然MR是一种计算框架,那么也存在其他的计算框架。

From: [Distributed ML] Yi WANG's talk

  1. Message Passing(消息传递)范式的一个框架叫做MPI,其实现叫作:MPICH2
  2. MapReduce范式的框架也叫MapReduce,其实现叫作:Apache Hadoop
  3. BSP范式,其实现叫作:Google Pregel (类似Spark)

 

一、逻辑流程

Mapping与Shuffling之间可以插入”Combine“过程,但不一定都适合,比如”求平均值“。

 

Ref: Java总结篇系列:Java泛型

Ref: Word Count MapReduce Program in Hadoop 

复制代码
import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
// Map function public static class MyMapper extends Mapper<LongWritable, Text, Text, IntWritable>{ private Text word = new Text(); public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // Splitting the line on spaces String[] stringArr = value.toString().split("\\s+"); for (String str : stringArr) { word.set(str);
// 每个单词出现1次,作为中间结果输出 context.write(word, new IntWritable(1)); } } } // Reduce function public static class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable>{ private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum);
// 输出最终结果 context.write(key, result); } }
public static void main(String[] args) throws Exception{ Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "WC");
job.setJarByClass(WordCount.class);
job.setMapperClass(MyMapper.class); job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class);

// 设置输入输出路径 FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1]));

// 提交作业 System.exit(job.waitForCompletion(true) ? 0 : 1); } }
复制代码

 

 

二、执行流程

其实就是 对 Yarn 的学习和理解。

Yarn不光能运行MapReduce程序,还能运行Spark程序等。

更多参考:MapReduce执行过程

 

原文链接:https://blog.csdn.net/qq_36951116/article/details/92435687

1、启动 RunJar

2、启动 MRAppMaster

3、启动 mapper的yarnChild(运行map or reduce)

4、销毁 mapper的yarnChild

5、启动 reduce的yarnChild(运行map or reduce)

6、销毁 reduce的yarnChild

7、销毁 RunJar

8、销毁 MRAppMaster

 

Ref: 实战案例玩转Hadoop系列11--运行Map Reduce程序

在真实的生产环境中,MAP REDUCE程序应该提交到Yarn集群上分布式运行,这样才能发挥出MAP REDUCE分布式并行计算的效果。

MAP REDUCE程序提交给Yarn执行的过程如下:

1、客户端代码中设置好MAP REDUCE程序运行时所要使用的Mapper类、Reducer类、程序Jar包所在路径、Job名称、Job输入数据的切片信息、Configuration所配置的参数等资源,统一提交给Yarn所指定的位于HDFS上的Job资源提交路径;

2、客户端向Yarn中的Resource Manager请求运行Jar包中MRAppMaster进程的资源容器Container;

3、Yarn将提供Container的任务指派给某个拥有空闲资源的 Node Manager节点,Node Manager接受任务后创建资源容器(即所谓的Container);

4、客户端向创建好容器的Node Manager发送启动MRAppMaster进程的shell脚本命令,启动MRAppMaster;

5、MRAppMaster启动后,读取 job相关配置及程序资源,向Resource Manager请求N个资源容器来启动若干个Map Task进程和若干个Reduce Task进程,并监控这些Map Task进程和Reduce Task进程的运行状态;

6、当整个Job的所有Map Task进程和Reduce Task进程任务处理完成后,整个Job的所有进程全部注销,Yarn则销毁Container,回收运算资源。

 

运行过程示意图如下:

 

 

三、自定义分区

Ref: Hadoop详解(四)——Shuffle原理,Partitioner分区原理,Combiner编程,常见的MR算法

Partitioner是shuffle的一部分。

默认规则:Hadoop有一个默认的分区规则。

手动规则:Partitioner是partitioner的基类,如果需要定制partitioner也需要继承该类。HashPartitioner是mapreduce的默认partitioner。通过如下计算方法得到当前的 "目的reducer"。

which reducer=(key.hashCode() & Integer.MAX_VALUE) % numReduceTasks,

 

日志数据

复制代码
1363157985066 	13726230503	00-FD-07-A4-72-B8:CMCC	120.196.100.82	i02.c.aliimg.com		24	27	2481	24681	200
1363157995052 	13826544101	5C-0E-8B-C7-F1-E0:CMCC	120.197.40.4			          4	0	264	0	200
1363157991076 	13926435656	20-10-7A-28-CC-0A:CMCC	120.196.100.99			          2	4	132	1512	200
1363154400022 	13926251106	5C-0E-8B-8B-B1-50:CMCC	120.197.40.4			          4	0	240	0	200
复制代码

 

代码演示

 Class DataBean
复制代码
package liuxun.hadoop.mr.dc;
 
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
 
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 
public class DataCountPartition {
 
    public static class DCMapper extends Mapper<LongWritable, Text, Text, DataBean> {
 
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            // accept
            String line = value.toString();
// split String[] fields = line.split("\t");
String tel= fields[1];
long up = Long.parseLong(fields[8]); long down = Long.parseLong(fields[9]); DataBean bean = new DataBean(tel, up, down);
// send context.write(new Text(tel), bean); } }
public static class DCReducer extends Reducer<Text, DataBean, Text, DataBean> { @Override protected void reduce(Text key, Iterable<DataBean> values, Context context) throws IOException, InterruptedException {
long up_sum = 0; long down_sum = 0;
for (DataBean bean : values) { up_sum += bean.getUpPayLoad(); down_sum += bean.getDownPayLoad(); } DataBean bean = new DataBean("", up_sum, down_sum); context.write(key, bean); } }
public static class ProviderPartitioner extends Partitioner<Text, DataBean> { private static Map<String, Integer> prividerMap = new HashMap<String, Integer>(); static { // 实际开发时是从数据库加载这种映射关系的 // 1:中国移动 2:中国联通 3:中国电信 prividerMap.put("135", 1); prividerMap.put("136", 1); prividerMap.put("137", 1); prividerMap.put("150", 2); prividerMap.put("159", 2); prividerMap.put("182", 3); prividerMap.put("183", 3); } // 此方法的返回值是分区号 // key: mapper一次输出的key 这里是手机号 // key: mapper一次输出的Value 这里是DataBean // numPartitions:分区数量,由Reducer的数量决定,启动几个Reducer就会有几个partition @Override public int getPartition(Text key, DataBean value, int numPartitions) { // 根据手机号得到运营商 此处根据key进行分区,实际开发中也可以根据value进行分区 String account = key.toString(); String sub_acc = account.substring(0, 3); Integer code = prividerMap.get(sub_acc); if (code == null) { code = 0; } return code; } }
public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(DataCountPartition.class); job.setMapperClass(DCMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(DataBean.class); FileInputFormat.setInputPaths(job, new Path(args[0])); job.setReducerClass(DCReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(DataBean.class); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.setPartitionerClass(ProviderPartitioner.class); // 设置启动Reducer的数量 job.setNumReduceTasks(Integer.parseInt(args[2])); job.waitForCompletion(true); } }
复制代码

 

设置Partitioner之前后对比

 

<k,v>中v可以是一个类(如上),k可以么?当然也可以。

 

 

四、二次排序

key使用了类,可以支持更为复杂的操作,比如这里的 "二次排序"。

所以,需要自定义BeanInfo类并实现WritableComparable接口,并重写compareTo方法和toString方法。

 

 

五、Combiners编程

每一个map可能会产生大量的输出,combiner的作用就是在map端对输出先做一次合并,以减少传输到reducer的数据量。

 

 

六、MR实现倒排序索引

参见链接中最后的例子:https://blog.csdn.net/u013087513/article/details/77799686

 

 

七、数据倾斜诊断和优化

此部分可以放在 yarn的章节一并讲解。

 

 

 

交互命令与编程


mrjob

一、相关资源

https://github.com/Yelp/mrjob/raw/master/docs/logos/logo_medium.png

Github: mrjob: the Python MapReduce library

文档版本:mrjob Documentation Release 0.7.0.dev0

网页版本:mrjob v0.7.0.dev0 documentation

 

二、Hello world 程序

 /* implement */

 

 

posted @ 2019-10-28 14:22  cschen588  阅读(223)  评论(0编辑  收藏  举报