虽有宝刀,藏而不用

银鞍白马

日拱一卒

卷积神经网络中的问题

1.反卷积

http://www.360doc.com/content/19/0507/12/57110788_834069126.shtml

更形象https://blog.csdn.net/tsyccnh/article/details/87357447

分数步长的理解:https://www.cnblogs.com/qcloud1001/p/10000106.htmlhttps://blog.csdn.net/dugudaibo/article/details/83109814

理解为一个稀疏的权重矩阵与图像相乘的过程

2.bp算法 神经元饱和

如果输出神经元是低激活()或者高激活(),那么最后一层中的权重将学习得很慢。这种情况下,通常是说输出神经元已经饱和了,并且权重已经停止学习了(或者学习得很慢)

3. CNN的BP

https://blog.csdn.net/qq_16137569/article/details/81477906

4.理解卷积

 https://www.zhihu.com/question/22298352

5.理解双三次插值

https://blog.csdn.net/qq_24451605/article/details/49474113

6.1x1卷积核

https://zhuanlan.zhihu.com/p/40050371

7. dead relu

https://www.zhihu.com/question/67151971/answer/434079498

posted @ 2019-09-08 10:16  银鞍白马  阅读(164)  评论(0编辑  收藏  举报