虽有宝刀,藏而不用

银鞍白马

日拱一卒

4.2 CNN实例探究

  阅读他人的代码能够帮助你学习编程。类似的,研究他人开训练出的实例,有助于你构建自己的CNN。

1.classicla network

1.1 LeNet-5

  

 

  n_H,n_W在减小,n_C在增加

  一个或多个卷积层后边跟一个池化层

  阅读论文:只需精读第二段

1.2 AlexNet

论文:任务被分到了两个GPU上处理

    LRN局部响应归一化层

1.3 VGGNet

 

 

2.ResNet

  

 

  跳远连接输入和输出若维度不同,则需要将输入乘以一个矩阵,以便将其维度与输出一致

3.Inception

  网路中的网络(1*1卷积)给神经网络添加了一个非线性函数,从而可以压缩信道数量或者保持信道数量不变

4.迁移学习

  当训练集较小时,freeze较多的层。训练集大时,可以freeze前边较少的层,将后边的层重新训练或者干脆改成自己的层。

  有越多的数据,需要冻结的层数越少,更够训练的层数越多。

 

非常建议使用迁移学习

5.数据扩充

  1.镜像,裁剪,旋转

  2.色彩转换。RGB变换,PCA颜色增强

6.在benchmarks或比赛中的技巧

  1.ensembling集成

    独立训练几个神经网络并平均其输出

  2.测试阶段multi-crop

posted @ 2019-09-03 08:45  银鞍白马  阅读(314)  评论(0编辑  收藏  举报