虽有宝刀,藏而不用

银鞍白马

日拱一卒

4.1 卷积神经网络

1. 边缘检测

 

2. Padding

  为了解决两个问题:

    1.输出缩小。卷积操作后图像由(n,n)变成了(n-f+1,n-f+1)

    2.丢失图像边缘的大部分信息

  在卷积操作前对图像边缘进行填充,填充p个像素点。则填充并进行卷积后图像尺寸为(n+2p-f+1, n+2p-f+1)

  选择填充size:valid卷积:不填充

        same卷积:填充并卷积后的图像尺寸和原图像尺寸一样,即n+2p-f+1=n

3. 步长

  设 输入为n*n, 过滤器f*f, padding=p, 步长=s.  则输出为((n+2p-f)/s+1, (n+2p-f)/s+1).商不是整数时向下取整

4. 池化层

5. 超参数

  尽量不要自己设置超参数,应当查看别人文献中怎么样设置的

  随着层数加深,$n_{h},n_{w}$通常会减少,而信道数通常增加

  池化层没有参数,卷积层参数较少,大部分参数都在FC层

卷积的优势:参数共享,稀疏连接

 

 

卷积层的超参数:卷积核大小,步长

池化层超参数:池化类型,核大小,步长

posted @ 2019-09-03 08:44  银鞍白马  阅读(155)  评论(0编辑  收藏  举报