二叉树按层次遍历--队列实现
最近数据结构看的还真是恶心额,脑子不好使,算法写不来额·····
二叉树一大堆概念性的东西,不过还是写吧。
二叉树(binary tree)
二叉树的基本形态
二叉树也是递归定义的,其结点有左右子树之分,逻辑上二叉树有五种基本形态:
(1)空二叉树——(a);
(2)只有一个根结点的二叉树——(b);
(3)只有左子树——(c);
(4)只有右子树——(d);
(5)完全二叉树——(e)
度(Degree):节点孩子的数目。
叶子(Leaf): 度为0的节点称为叶子。
深度(Depth):树中最大的层次(从最上0开始数)
满二叉树:一棵深度为k且有2^k -1个节点的二叉树。
完全二叉树:若设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层有叶子节点,并且叶子节点都是从左到右依次排布,这就是完全二叉树。
性质1:在二叉树的第i层上至多有2^(i-1)个节点(i >= 1)
性质2:深度为k的二叉树至多有2^k - 1个节点
性质3:任意一棵二叉树T,若其叶子节点数为n0,度为2的节点数为n2,则n0 = n2 + 1
对于完全二叉树:
性质4:具有n个节点的完全二叉树的深度是[log2n] + 1
性质5:有N个结点的完全二叉树各结点如果用顺序方式存储,则结点之间有如下关系:
若I为结点编号则 如果I<>1,则其父结点的编号为I/2;
如果2*I<=N,则其左儿子(即左子树的根结点)的编号为2*I;若2*I>N,则无左儿子;
如果2*I+1<=N,则其右儿子的结点编号为2*I+1;若2*I+1>N,则无右儿子。
二叉树按层次遍历----队列实现
1.创建二叉树,输入#代表NULL,调用递归创建二叉树。
2.构建一个队列专门用来储存二叉树节点指针,先把根节点入队,假设是A,对A元素进行访问,然后对A的左右孩子依次入队,假设B,C。A出队列,再是对B进行访问,同样将B的左右孩子入队列,B出对列······重复以上,知道队列为空。
下面是的代码是实现按层次从上到下遍历二叉树: