用MATLAB的Classficiation Learner工具箱对12个数据集进行各种分类与验证

准备材料

  

  以所有的特征集作为variable进行像Bayes吖、SVM吖、决策树吖......分类。同时对数据进行预处理,选出相关度高的特征子集作为新的一组data进行分类(预处理的代码不必放出来)。

Classficiation Learner工具箱的使用

  从应用程序(APP)栏下的机器学习和深度学习可以get。

  

  NEW Session,从工作空间导入数据集。

  

  Start Session。

  

   选择分类器进行train。

  

结果

  AUC 值越大,说明该模型的性能越好。

  以CM1为例:

  原始特征集、决策树

  
  原始特征集、SVM

  

  特征子集、决策树

  

  特征子集、SVM

  

  其中,百分数表示经过十次十折交叉验证进行循环测试,最后返回的准确率;分号右边表示计算得到的AUC大小。

  从中我们可以看到像JM1、MC1、PC5这些数据量大的数据集,最后得到的计算结果相对较好,而对于一些数据量较小的数据集,训练出的结果部分存在差距。

posted @ 2019-12-09 10:43  cruelty_angel  阅读(1053)  评论(2编辑  收藏  举报