【神经网络】搭建执行tiny-dnn/tiny-cnn的配置环境来执行测试用例
用例1:
卷积神经网络(Convolutional neural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型
tiny_dnn是一个轻量级的CNN(卷积神经网络),不需要各种依赖和CPU,由三千多行C++代码完成。还没有开始研究代码,参照网上的一个案例,先搭载环境完成tiny_dnn的配置,让它在vs2013上运行成功!
/*
Copyright (c) 2013, Taiga Nomi
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <iostream>
#include <memory>
#include <string>
#include <algorithm>
#include <vector>
#include "tiny_dnn/tiny_dnn.h"
using namespace tiny_dnn;
using namespace tiny_dnn::activation;
using namespace tiny_dnn::layers;
using namespace std;
void sample1_convnet(const string& data_dir = "./data");
void sample2_mlp(const string& data_dir = "./data");
void sample3_dae();
void sample4_dropout(const string& data_dir = "./data");
void sample5_unbalanced_training_data(const string& data_dir = "./data");
void sample6_graph();
int main(int argc, char** argv) {
try {
if (argc == 2) {
sample1_convnet(argv[1]);
}
else {
sample1_convnet();
}
}
catch (const nn_error& e) {
std::cout << e.what() << std::endl;
}
}
///////////////////////////////////////////////////////////////////////////////
// learning convolutional neural networks (LeNet-5 like architecture)
void sample1_convnet(const string& data_dir) {
// construct LeNet-5 architecture
network<sequential> nn;
adagrad optimizer;
// connection table [Y.Lecun, 1998 Table.1]
#define O true
#define X false
static const bool connection[] = {
O, X, X, X, O, O, O, X, X, O, O, O, O, X, O, O,
O, O, X, X, X, O, O, O, X, X, O, O, O, O, X, O,
O, O, O, X, X, X, O, O, O, X, X, O, X, O, O, O,
X, O, O, O, X, X, O, O, O, O, X, X, O, X, O, O,
X, X, O, O, O, X, X, O, O, O, O, X, O, O, X, O,
X, X, X, O, O, O, X, X, O, O, O, O, X, O, O, O
};
#undef O
#undef X
nn << convolutional_layer<tan_h>(
32, 32, 5, 1, 6) /* 32x32 in, 5x5 kernel, 1-6 fmaps conv */
<< average_pooling_layer<tan_h>(
28, 28, 6, 2) /* 28x28 in, 6 fmaps, 2x2 subsampling */
<< convolutional_layer<tan_h>(
14, 14, 5, 6, 16, connection_table(connection, 6, 16))
<< average_pooling_layer<tan_h>(10, 10, 16, 2)
<< convolutional_layer<tan_h>(5, 5, 5, 16, 120)
<< fully_connected_layer<tan_h>(120, 10);
std::cout << "load models..." << std::endl;
// load MNIST dataset
std::vector<label_t> train_labels, test_labels;
std::vector<vec_t> train_images, test_images;
std::string train_labels_path = data_dir + "/database/MNIST/train-labels.idx1-ubyte";
std::string train_images_path = data_dir + "/database/MNIST/train-images.idx3-ubyte";
std::string test_labels_path = data_dir + "/database/MNIST/t10k-labels.idx1-ubyte";
std::string test_images_path = data_dir + "/database/MNIST/t10k-images.idx3-ubyte";
parse_mnist_labels(train_labels_path, &train_labels);
parse_mnist_images(train_images_path, &train_images, -1.0, 1.0, 2, 2);
parse_mnist_labels(test_labels_path, &test_labels);
parse_mnist_images(test_images_path, &test_images, -1.0, 1.0, 2, 2);
std::cout << "start learning" << std::endl;
progress_display disp(train_images.size());
timer t;
int minibatch_size = 10;
optimizer.alpha *= std::sqrt(minibatch_size);
// create callback
auto on_enumerate_epoch = [&](){
std::cout << t.elapsed() << "s elapsed." << std::endl;
tiny_dnn::result res = nn.test(test_images, test_labels);
std::cout << res.num_success << "/" << res.num_total << std::endl;
disp.restart(train_images.size());
t.restart();
};
auto on_enumerate_minibatch = [&](){
disp += minibatch_size;
};
// training
nn.train<mse>(optimizer, train_images, train_labels, minibatch_size, 20,
on_enumerate_minibatch, on_enumerate_epoch);
std::cout << "end training." << std::endl;
// test and show results
nn.test(test_images, test_labels).print_detail(std::cout);
// save networks
std::ofstream ofs("LeNet-weights");
ofs << nn;
}
///////////////////////////////////////////////////////////////////////////////
// learning 3-Layer Networks
void sample2_mlp(const string& data_dir) {
const serial_size_t num_hidden_units = 500;
#if defined(_MSC_VER) && _MSC_VER < 1800
// initializer-list is not supported
int num_units[] = { 28 * 28, num_hidden_units, 10 };
auto nn = make_mlp<tan_h>(num_units, num_units + 3);
#else
auto nn = make_mlp<tan_h>({ 28 * 28, num_hidden_units, 10 });
#endif
gradient_descent optimizer;
// load MNIST dataset
std::vector<label_t> train_labels, test_labels;
std::vector<vec_t> train_images, test_images;
std::string train_labels_path = data_dir + "/database/MNIST/train-labels.idx1-ubyte";
std::string train_images_path = data_dir + "/database/MNIST/train-images.idx3-ubyte";
std::string test_labels_path = data_dir + "/database/MNIST/t10k-labels.idx1-ubyte";
std::string test_images_path = data_dir + "/database/MNIST/t10k-images.idx3-ubyte";
parse_mnist_labels(train_labels_path, &train_labels);
parse_mnist_images(train_images_path, &train_images, -1.0, 1.0, 0, 0);
parse_mnist_labels(test_labels_path, &test_labels);
parse_mnist_images(test_images_path, &test_images, -1.0, 1.0, 0, 0);
optimizer.alpha = 0.001;
progress_display disp(train_images.size());
timer t;
// create callback
auto on_enumerate_epoch = [&](){
std::cout << t.elapsed() << "s elapsed." << std::endl;
tiny_dnn::result res = nn.test(test_images, test_labels);
std::cout << optimizer.alpha << ","
<< res.num_success << "/" << res.num_total << std::endl;
optimizer.alpha *= 0.85; // decay learning rate
optimizer.alpha = std::max((tiny_dnn::float_t)0.00001, optimizer.alpha);
disp.restart(train_images.size());
t.restart();
};
auto on_enumerate_data = [&](){
++disp;
};
nn.train<mse>(optimizer, train_images, train_labels, 1, 20,
on_enumerate_data, on_enumerate_epoch);
}
///////////////////////////////////////////////////////////////////////////////
// denoising auto-encoder
void sample3_dae() {
#if defined(_MSC_VER) && _MSC_VER < 1800
// initializer-list is not supported
int num_units[] = { 100, 400, 100 };
auto nn = make_mlp<tan_h>(num_units, num_units + 3);
#else
auto nn = make_mlp<tan_h>({ 100, 400, 100 });
#endif
std::vector<vec_t> train_data_original;
// load train-data
std::vector<vec_t> train_data_corrupted(train_data_original);
for (auto& d : train_data_corrupted) {
d = corrupt(move(d), 0.1, 0.0); // corrupt 10% data
}
gradient_descent optimizer;
// learning 100-400-100 denoising auto-encoder
nn.train<mse>(optimizer, train_data_corrupted, train_data_original);
}
///////////////////////////////////////////////////////////////////////////////
// dropout-learning
void sample4_dropout(const string& data_dir) {
typedef network<sequential> Network;
Network nn;
serial_size_t input_dim = 28 * 28;
serial_size_t hidden_units = 800;
serial_size_t output_dim = 10;
gradient_descent optimizer;
fully_connected_layer<tan_h> f1(input_dim, hidden_units);
dropout_layer dropout(hidden_units, 0.5);
fully_connected_layer<tan_h> f2(hidden_units, output_dim);
nn << f1 << dropout << f2;
optimizer.alpha = 0.003; // TODO(nyanp): not optimized
optimizer.lambda = 0.0;
// load MNIST dataset
std::vector<label_t> train_labels, test_labels;
std::vector<vec_t> train_images, test_images;
std::string train_labels_path = data_dir + "/database/MNIST/train-labels.idx1-ubyte";
std::string train_images_path = data_dir + "/database/MNIST/train-images.idx3-ubyte";
std::string test_labels_path = data_dir + "/database/MNIST/t10k-labels.idx1-ubyte";
std::string test_images_path = data_dir + "/database/MNIST/t10k-images.idx3-ubyte";
parse_mnist_labels(train_labels_path, &train_labels);
parse_mnist_images(train_images_path, &train_images, -1.0, 1.0, 0, 0);
parse_mnist_labels(test_labels_path, &test_labels);
parse_mnist_images(test_images_path, &test_images, -1.0, 1.0, 0, 0);
// load train-data, label_data
progress_display disp(train_images.size());
timer t;
// create callback
auto on_enumerate_epoch = [&](){
std::cout << t.elapsed() << "s elapsed." << std::endl;
dropout.set_context(net_phase::test);
tiny_dnn::result res = nn.test(test_images, test_labels);
dropout.set_context(net_phase::train);
std::cout << optimizer.alpha << ","
<< res.num_success << "/" << res.num_total << std::endl;
optimizer.alpha *= 0.99; // decay learning rate
optimizer.alpha = std::max((tiny_dnn::float_t)0.00001, optimizer.alpha);
disp.restart(train_images.size());
t.restart();
};
auto on_enumerate_data = [&](){
++disp;
};
nn.train<mse>(optimizer, train_images, train_labels, 1, 100,
on_enumerate_data, on_enumerate_epoch);
// change context to enable all hidden-units
// f1.set_context(dropout::test_phase);
// std::cout << res.num_success << "/" << res.num_total << std::endl;
}
#include "tiny_dnn/util/target_cost.h"
///////////////////////////////////////////////////////////////////////////////
// learning unbalanced training data
void sample5_unbalanced_training_data(const string& data_dir) {
// keep the network relatively simple
const serial_size_t num_hidden_units = 20;
auto nn_standard = make_mlp<tan_h>({ 28 * 28, num_hidden_units, 10 });
auto nn_balanced = make_mlp<tan_h>({ 28 * 28, num_hidden_units, 10 });
gradient_descent optimizer;
// load MNIST dataset
std::vector<label_t> train_labels, test_labels;
std::vector<vec_t> train_images, test_images;
std::string train_labels_path = data_dir + "/database/MNIST/train-labels.idx1-ubyte";
std::string train_images_path = data_dir + "/database/MNIST/train-images.idx3-ubyte";
std::string test_labels_path = data_dir + "/database/MNIST/t10k-labels.idx1-ubyte";
std::string test_images_path = data_dir + "/database/MNIST/t10k-images.idx3-ubyte";
parse_mnist_labels(train_labels_path, &train_labels);
parse_mnist_images(train_images_path, &train_images, -1.0, 1.0, 0, 0);
parse_mnist_labels(test_labels_path, &test_labels);
parse_mnist_images(test_images_path, &test_images, -1.0, 1.0, 0, 0);
{ // create an unbalanced training set
std::vector<label_t> train_labels_unbalanced;
std::vector<vec_t> train_images_unbalanced;
train_labels_unbalanced.reserve(train_labels.size());
train_images_unbalanced.reserve(train_images.size());
for (size_t i = 0, end = train_labels.size(); i < end; ++i) {
const label_t label = train_labels[i];
// drop most 0s, 1s, 2s, 3s, and 4s
const bool keep_sample = label >= 5 || bernoulli(0.005);
if (keep_sample) {
train_labels_unbalanced.push_back(label);
train_images_unbalanced.push_back(train_images[i]);
}
}
// keep the newly created unbalanced training set
std::swap(train_labels, train_labels_unbalanced);
std::swap(train_images, train_images_unbalanced);
}
optimizer.alpha = 0.001;
progress_display disp(train_images.size());
timer t;
const int minibatch_size = 10;
auto nn = &nn_standard; // the network referred to by the callbacks
// create callbacks - as usual
auto on_enumerate_epoch = [&](){
std::cout << t.elapsed() << "s elapsed." << std::endl;
tiny_dnn::result res = nn->test(test_images, test_labels);
std::cout << optimizer.alpha << ","
<< res.num_success << "/" << res.num_total << std::endl;
optimizer.alpha *= 0.85; // decay learning rate
optimizer.alpha = std::max(
static_cast<tiny_dnn::float_t>(0.00001), optimizer.alpha);
disp.restart(train_images.size());
t.restart();
};
auto on_enumerate_data = [&](){
disp += minibatch_size;
};
// first train the standard network (default cost - equal for each sample)
// - note that it does not learn the classes 0-4
nn_standard.train<mse>(optimizer, train_images, train_labels,
minibatch_size, 20, on_enumerate_data,
on_enumerate_epoch, true, CNN_TASK_SIZE);
// then train another network, now with explicitly
// supplied target costs (aim: a more balanced predictor)
// - note that it can learn the classes 0-4 (at least somehow)
nn = &nn_balanced;
optimizer = gradient_descent();
const auto target_cost = create_balanced_target_cost(train_labels, 0.8);
nn_balanced.train<mse>(optimizer, train_images, train_labels,
minibatch_size, 20, on_enumerate_data,
on_enumerate_epoch, true, CNN_TASK_SIZE,
target_cost);
// test and show results
std::cout << "\nStandard training (implicitly assumed equal "
<< "cost for every sample):\n";
nn_standard.test(test_images, test_labels).print_detail(std::cout);
std::cout << "\nBalanced training "
<< "(explicitly supplied target costs):\n";
nn_balanced.test(test_images, test_labels).print_detail(std::cout);
}
void sample6_graph() {
// declare node
auto in1 = std::make_shared<input_layer>(shape3d(3, 1, 1));
auto in2 = std::make_shared<input_layer>(shape3d(3, 1, 1));
auto added = std::make_shared<add>(2, 3);
auto out = std::make_shared<linear_layer<relu>>(3);
// connect
(in1, in2) << added;
added << out;
network<graph> net;
construct_graph(net, { in1, in2 }, { out });
auto res = net.predict({ { 2, 4, 3 }, { -1, 2, -5 } })[0];
// relu({2,4,3} + {-1,2,-5}) = {1,6,0}
std::cout << res[0] << "," << res[1] << "," << res[2] << std::endl;
}
tiny_dnn环境配置:
在vs2013中新建一个cpp项目,在属性的C/C++,附加包含目录,在这把tiny-dnn的根目录加进来,导入头文件。之后新建一个cpp文件,把tiny-dnn\examples下的main.cpp代码拷进来,编译时报错, 加了一句_SCL_SECURE_NO_WARNINGS就好了。
注意:
需要修改代码中数据集的路径。见源码main.cpp
之后运行,成功界面:
结果:这个小demo就这样一直这样执行。。。时间太长,大约过了10h时,自动退出执行。
----------------------------------------------------------------------------
用例2:参照这个案例tiny-cnn开源库的使用(MNIST)
http://blog.csdn.net/fengbingchun/article/details/50573841
测试:
C:\Users\gemeng.LEIDI\Documents\Visual Studio 2013\Projects\Tiny-cnn-hlelp_ConsoleApplication
结果:大约执行了20h,直到第二天我看,程序执行结果如下图:
再次测试:
结果:再次测完耗时约40h。。。
------------------------------------------------------------------------
用例3:参照这个案例C++卷积神经网络实例:tiny_cnn代码详解(1)——开篇
http://blog.csdn.net/u013088062/article/details/50839015
测试:
选择解决方案资源管理器->项目名(openCVtest)->右键属性->配置管理器->新建->选择x64
----------------------------------------------------------------------------
用例4:参照这个案例Tiny_cnn用自己的数据训练和测试
http://blog.csdn.net/u012507022/article/details/51815701
测试:
--------------------------------------------------------------------------
用例5:参照这个案例 初试cnn(1)
http://blog.csdn.net/vicdd/article/details/52750379
测试: