分类与监督学习,朴素贝叶斯分类算法


1.理解分类与监督学习、聚类与无监督学习。

简述分类与聚类的联系与区别。

简述什么是监督学习与无监督学习。

答:

1.

分类与聚类:

联系:分类和聚类都包含一个过程:对于想要分析的目标点,都会在数据集中寻找离它最近的点,即二者都用到了NN算法。

区别:分类的目的是为了确定一个点的类别 ,聚类的目的是将一系列点分成若干类,事先是没有类别的,即分类是已知的,聚类是未知的;分类是一种监督学习,聚类是一种无监督学习,分类一般用KNN算法,聚类一般用K-Means算法

 

监督学习和无监督学习:

监督学习:从标记的训练数据来推断一个功能,从正确的例子中学习,每个实例都是由一个输入对象(通常为矢量)和一个期望的输出值(也称为监督信号)组成。

无监督学习:缺乏足够的先验知识,输入X,在数据(没有被标记)中发现一些规律。

2.朴素贝叶斯分类算法 实例

利用关于心脏病患者的临床历史数据集,建立朴素贝叶斯心脏病分类模型。

有六个分类变量(分类因子):性别,年龄、KILLP评分、饮酒、吸烟、住院天数

目标分类变量疾病:

–心梗

–不稳定性心绞痛

新的实例:–(性别=‘男’,年龄<70, KILLP=‘I',饮酒=‘是’,吸烟≈‘是”,住院天数<7)

最可能是哪个疾病?

上传手工演算过程。

 

性别

年龄

KILLP

饮酒

吸烟

住院天数

疾病

1

>80

1

7-14

心梗

2

70-80

2

<7

心梗

3

70-81

1

<7

不稳定性心绞痛

4

<70

1

>14

心梗

5

70-80

2

7-14

心梗

6

>80

2

7-14

心梗

7

70-80

1

7-14

心梗

8

70-80

2

7-14

心梗

9

70-80

1

<7

心梗

10

<70

1

7-14

心梗

11

>80

3

<7

心梗

12

70-80

1

7-14

心梗

13

>80

3

7-14

不稳定性心绞痛

14

70-80

3

>14

不稳定性心绞痛

15

<70

3

<7

心梗

16

70-80

1

>14

心梗

17

<70

1

7-14

心梗

18

70-80

1

>14

心梗

19

70-80

2

7-14

心梗

20

<70

3

<7

不稳定性心绞痛

 

 解:

 

 

3.使用朴素贝叶斯模型对iris数据集进行花分类。

尝试使用3种不同类型的朴素贝叶斯:

  • 高斯分布型
  • 多项式型
  • 伯努利型

并使用sklearn.model_selection.cross_val_score(),对各模型进行交叉验证。

3种不同类型的朴素贝叶斯对iris数据集进行花分类:

代码:

 

结果:

 

 

对各模型进行交叉验证:

 

 

 

 结果:

 

 

posted @ 2020-06-10 22:23  CrJia  阅读(192)  评论(0编辑  收藏  举报