手写数字识别-小数据集

老师您好十分抱歉,第十一次的作业我并没有如期上交,因为我当时帮助家里打点店铺,结果疏漏了完成作业这件事,十分抱歉,下面是我第十一次作业的补交链接,烦请查收。

链接:

分类与监督学习,朴素贝叶斯分类算法

 

 

1.手写数字数据集

  • from sklearn.datasets import load_digits
  • digits = load_digits()

 代码:

from sklearn.datasets import load_digits
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder

digits = load_digits()
Xd = digits.data.astype(np.float32)
Yd = digits.target.astype(np.float32).reshape(-1, 1)

 

2.图片数据预处理

  • x:归一化MinMaxScaler()
  • y:独热编码OneHotEncoder()或to_categorical
  • 训练集测试集划分
  • 张量结构

代码:

scaler = MinMaxScaler()
Xd = scaler.fit_transform(Xd)
print("归一化 Xd:")
print(Xd)
Y = OneHotEncoder().fit_transform(Yd).todense()
print("独热编码 Y:")
print(Y)
X = Xd.reshape(-1, 8, 8, 1)
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0, stratify=Y)
print('X_train.shape, X_test.shape, y_train.shape, y_test.shape:', X_train.shape, X_test.shape, y_train.shape, y_test.shape)

结果:

 

 

 

3.设计卷积神经网络结构

  • 绘制模型结构图,并说明设计依据。

结构图为:

 

 

代码

# 建立模型
model = Sequential()
#定义卷积核的大小
ks = (3, 3)
input_shape = X_train.shape[1:]
# 一层卷积
model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=input_shape, activation='relu'))
# 池化层(1)
model.add(MaxPool2D(pool_size=(2, 2)))
# 防止过拟合,随机丢掉连接
model.add(Dropout(0.25))
# 二层卷积
model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu'))
# 池化层(2)
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
# 三层卷积
model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))
# 四层卷积
model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu'))
# 池化层(3)
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
# 平坦层
model.add(Flatten())
# 全连接层
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.25))
# 激活函数softmax
model.add(Dense(10, activation='softmax'))
print(model.summary())

结果:

 

 

4.模型训练

代码:

import matplotlib.pyplot as plt
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
train_history = model.fit(x=X_train, y=y_train, validation_split=0.2, batch_size=300, epochs=10, verbose=2)
# 可视化绘图
def show_train_history(train_history, train, validation):
    plt.plot(train_history.history[train])
    plt.plot(train_history.history[validation])
    plt.title('Train History')
    plt.ylabel('train')
    plt.xlabel('epoch')
    plt.legend(['train', 'validation'], loc='upper left')
    plt.show()
# 准确率
show_train_history(train_history, 'accuracy', 'val_accuracy')
# 损失率
show_train_history(train_history, 'loss', 'val_loss')

结果:

 

 

 

 

5.模型评价

  • model.evaluate()
  • 交叉表与交叉矩阵
  • pandas.crosstab
  • seaborn.heatmap

代码:

import pandas as pd
import seaborn as sns
score = model.evaluate(X_test, y_test)
print('准确率为', score)
y_pre = model.predict_classes(X_test)
print('y_pred:', y_pre[:10])
# 交叉表与交叉矩阵
y_test1 = np.argmax(y_test, axis=1).reshape(-1)
y_true = np.array(y_test1)[0]
# 与原数据对比
pd.crosstab(y_true, y_pre, rownames=['true'], colnames=['predict'])
# 交叉矩阵
y_test1 = y_test1.tolist()[0]
a = pd.crosstab(np.array(y_test1), y_pre, rownames=['Lables'], colnames=['Predict'])
df = pd.DataFrame(a)
sns.heatmap(df, annot=True, cmap="Reds", linewidths=0.2, linecolor='G')
plt.show()

 

结果:

 

 

 

posted @ 2020-06-10 21:40  CrJia  阅读(520)  评论(1编辑  收藏  举报