没有规整的零散的数学概念
1、关于一组数字的统计学指标。连续变量的统计描述
集中趋势:算数平均,中位数,几何均数,截尾均数,众数
离散趋势:全距,方差、百分数位、四分数位、四分卫间距、变异系数、
分布特征:偏度、峰度
统计学是通过搜索、整理、分析、描述数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。统计学用到了大量的数学及其它学科的专业知识,其应用范围几乎覆盖了社会科学和自然科学的各个领域。
2、贝叶斯统计
设 , ..., 为样本空间S的一个划分,如果以 表示事件 发生的概率,且 。对于任一事件 , ,则有:
3、布尔代数 :将逻辑关系用代数符号系统进行了表述。也就说是:把逻辑判断的过程进行了数字化,运算化。 由此建立起来 数字电路数学化。二进制天然的机器语言描述
4、数理逻辑代数
1)建立代数集合 L={K,+,. ,-,0,1}
2)建立公理 交换律:位置交换,空间位置变化不影响结果
结合律:计算的先后顺序,时间变化不影响结果
分配律:时间和空间同时变化 a*(b+c)=ab+ac
0-1律
互补律
3)逻辑函数 F=f(a1,a2,a3,a4,.....,an) 三种表示的方法 表达式,真值表,卡诺图
4)定理、运算规则 或,与,非
5、向量 余弦定理 分类
余弦定理:a2=b2+c2-2bccos(bc) 描述三角形边长和角的关系
6、第一次数学危机
毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。毕达哥拉斯学派所说的数仅指整数。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数
的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的
的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。
根号2
的诞生。小小
第二次数学危机
导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹共同发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如反掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。但经过牛顿和莱布尼兹等著名科学家的努力(主要是柯西用极限的方法定义了无穷小量),微积分理论得以发展和完善,从而使数学大厦变得更加辉煌美丽。
第三次数学危机
十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“……借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……”
罗素构造了一个集合S:S由一切不是自身元素的集合所组成。然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。其实,在罗素之前集合论中就已经发现了悖论。如1897年,布拉利和福尔蒂提出了最大序数悖论。1899年,康托尔自己发现了最大基数悖论。但是,由于这两个悖论都涉及集合中的许多复杂理论,所以只是在数学界揭起了一点小涟漪,未能引起大的注意。罗素悖论则不同。它非常浅显易懂,而且所涉及的只是集合论中最基本的东西。所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。如G.弗雷格在收到罗素介绍这一悖论的信后伤心地说:“一个科学家所遇到的最不合心意的事莫过于是在他的工作即将结束时,其基础崩溃了。罗素先生的一封信正好把我置于这个境地。”戴德金也因此推迟了他的《什么是数的本质和作用》一文的再版。可以说,这一悖论就像在平静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机。