化学用到的基本概念

1、化合物

化合物由两种或两种以上元素的原子(指不同元素的原子种类)组成的纯净物。

2、化学键

化学键(chemical bond)是纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。使离子相结合或原子相结合的作用力通称为化学键。

离子键是通过原子间电子转移,形成正负离子,由静电作用形成的。共价键的成因较为复杂,路易斯理论认为,共价键是通过原子间共用一对或多对电子形成的,其他的解释还有价键理论,价层电子互斥理论,分子轨道理论和杂化轨道理论等。金属键是一种改性的共价键,它是由多个原子共用一些自由流动的电子形成的。化学键在本质上是电性的,原子在形成分子时,外层电子发生了重新分布(转移共用偏移等),从而产生了正、负电性间的强烈作用力。但这种电性作用的方式和程度有所不同,所以又可将化学键分为离子键、共价键和金属键等。离子键是原子得失电子后生成的阴阳离子之间靠静电作用而形成的化学键。离子键的本质是静电作用。由于静电引力没有方向性,阴阳离子之间的作用可在任何方向上,离子键没有方向性。只有条件允许,阳离子周围可以尽可能多的吸引阴离子,反之亦然,离子键没有饱和性。不同的阴离子和阳离子的半径、电性不同,所形成的晶体空间点阵并不相同。

3、离子

是指原子由于自身或外界的作用而失去或得到一个或几个电子使其达到最外层电子数为8个或2个的稳定结构。这一过程称为电离。电离过程所需或放出的能量称为电离能。与分子、原子一样,离子也是构成物质的基本粒子。

4、等离子态

将气体加热,当其原子达到几千甚至上万摄氏度时,电子就会被原子"甩"掉,原子变成只带正电荷的离子。此时,电子和离子带的电荷相反,但数量相等,这种状态称做等离子态。

在日常生活中,我们会遇到各种各样的物质.根据它们的状态,可以分为三大类,即固体、液体和气体.例如钢铁是固体,水是液体,而氧气是气体.任何一种物质,在一定条件下都能在这三种状态之间转变.以水为例,在一个标准大气压下,当温度降到0℃以下时,水开始变成冰.而当温度升到100℃时,水就会沸腾而变成水蒸气.

如果温度不断升高,气体又会怎样变化呢?科学家告诉我们,这时构成分子的原子发生分裂,形成为独立的原子,如氮分子会分裂成两个氮原子,我们称这种过程为气体分子的离解.如果再进一步升高温度,原子中的电子就会从原子中剥离出来,成为带正电荷的原子核和带负电荷的电子,这个过程称为原子的电离.当这种电离过程频繁发生,使电子和离子的浓度达到一定的数值时,物质的状态也就起了根本的变化,它的性质也变得与气体完全不同.为区别于固体、液体和气体这三种状态,我们称物质的这种状态为物质的第四态,又起名叫等离子态.

就在我们周围,也经常看到等离子态的物质。在日光灯和霓虹灯的灯管里,在眩目的白炽电弧里,都能找到它的踪迹。另外,在地球周围的电离层里,在美丽的极光、大气中的闪光放电和流星的尾巴里,也能找到奇妙的等离子态。

5、电负性

是元素的原子在化合物中吸引电子的能力的标度。元素的电负性越大,表示其原子在化合物中吸引电子的能力越强。

6、共价键极性
是因为成键的两个原子电负性不相同而产生的。电负性高的原子会把共享电子对“拉”向它那一方,使得电荷不均匀分布。这样形成了一组偶极,这样的键就是极性键。电负性高的原子是负偶极,记作δ-;电负性低的原子是正偶极,记作δ+。[2]
键的极性程度可以用两个原子电负性之差来衡量。差值在0.4到1.9之间的是典型的极性共价键。两个原子完全相同(当然电负性也完全相同)时,差值为0,这时原子间成非极性键。相反地,如果差值超过了1.9,这两个原子之间就不会形成共价键,而是离子键。
7、,极性
指一根共价键或一个共价分子中电荷分布的不均匀性。如果电荷分布得不均匀,则称该键或分子为极性;如果均匀,则称为非极性。物质的一些物理性质(如溶解性、熔沸点等)与分子的极性相关。
水分子极性。水的一项重要特性就是它的极性.水分子呈角状,当中氢原子位于末端而氧原子则在顶点.由于氧的电负性比氢高,所以分子中有氧原子的一边电荷会偏负.带这样一个电荷差的分子被称为偶极子.电荷差使得水分子互相吸引(偏正电的区域会被偏负电的区域吸引),同时亦使它们和其他极性分子互相吸引.这种吸引力被称为氢键,它解释了许多水的特性.某些分子,如二氧化碳,原子间负电性亦有差异,但不同之处在于二氧化碳分子形状成对称排列,因此对立电荷会被相互抵消.如果将电源靠近小水柱时亦可观察到水的此一现象,这现象会使水向电源.这就是你所问的“在静电场吸引下水柱会偏向”的原因.
8、酰胺基是-CONH2。肽键是酰亚胺基(含一个亚氨基-NH-)。酰胺:RCONH2。最简单的酰胺是尿素:H2NCONH2。其中酰基:RCO-。
   羧基(carboxyl)是有机化学中的基本化学基,所有的有机酸物质都可以叫羧酸,由一个碳原子、两个氧原子和一个氢原子组成,化学式-COOH。如醋酸(CH3-COOH)、氨基酸都含有羧基,这些羧基与烃基直接连接的化合物,叫作羧酸。
   烃基在化学中,被用来指只含碳、氢两种原子的官能团,可以看作是相应的失去一个氢原子(H)后剩下的自由基。
   氨基(Amino)是有机化学中的基本碱基,所有含有氨基的有机物都有一定碱的特性,由一个氮原子和两个原子组成,化学式-NH2。
 
9、络合反应
分子或者离子与金属离子结合,形成很稳定的新的离子的过程就叫络合反应,生成的物质叫络合物
10、脱水缩合反应
两个或多个有机分子相互作用后以共价键结合成一个大分子,同时失去水的反应。
11、水解
水解是一种化工单元过程,是利用水将物质分解形成新的物质的过程。水解是盐电离出的离子结合了水电离出的H+和OH-生成弱电解质分子的反应。水解是物质与水发生的导致物质发生分解的反应(不一定是复分解反应)也可以说是物质与水中的氢离子或者是氢氧根离子发生反应。大多数有机化合物的水解,仅用水是很难顺利进行的。根据被水解物的性质水解剂可以用氢氧化钠水溶液、稀酸或浓酸,有时还可用氢氧化钾氢氧化钙亚硫酸氢钠等的水溶液。这就是所谓的加碱水解和加酸水解。水解可以采用间歇或连续式操作,前者常在塔式反应器中进行,后者则多用釜式反应器。典型的水解有五种类型。
12、聚丙烯酰胺
聚丙烯酰胺分类聚丙烯酰胺产品简介:聚丙烯酰胺(PAM)为水溶性高分子聚合物,不溶于大多数有机溶剂,具有良好的絮凝性,可以降低液体之间的摩擦阻力,按离子特性分可分为非离子、阴离子、阳离子和两性型四种类型。
PAM水溶液与许多能和水互溶的有机物有很好的相容性,对电解质有很好的相容性,对氯化胺、硫酸钙、硫酸铜、氢氧化钾、碳酸钠、硼酸钠、硝酸钠、磷酸钠、硫酸钠、氯化锌、硼酸及磷酸等物质不敏感
13、聚丙烯酰胺引发剂
目前我国聚丙烯酰胺聚合用的引发剂有无机引发剂、有机引发剂和无机—有机混合体系3中类型。
过氧化物大致分为无机过氧化物和有机过氧化物。无机过氧化物如过流酸钾,过硫酸铵、过溴酸钠和过氧化氢等。有机过氧化物如过氧化苯甲酰、过氧化月桂酰和叔丁羟基过氧化物等。它们配用的还原剂有硫酸亚铁、氯化亚铁、偏亚硫酸钠和硫代硫酸钠等。
(2)偶氮化合物类
如偶氮二异丁腈、偶氮双二甲基戊腈、偶氮双氰基戊酸钠和20世纪80年代开发的偶氮脒盐系列,如偶氮N-取代脒丙烷盐酸盐是一类竞相开发的产品,它们的加入浓度为万分之0.005-1,催化效率很高,有助于生产相对分子质量高的产品,且溶于水,便于使用。
14、聚丙烯酰胺水溶液
溶解颗粒状聚合物的水应该是干净(如自来水),不能是污水。常温的水即可,一般不需要加温。水温低于5℃时溶解很慢。水温提高溶解速度加快,但40℃以上会使聚合物加快降解,影响使用效果。一般自来水都适合于配制聚合物溶液。强酸、强碱、高含盐的水不适于用来配制。
15、聚丙烯酰胺粘度影响因素
聚丙烯酰胺溶液的粘度主要反映了液体分子之间因流动或相对运动所产生的内摩擦阻力。内摩擦阻力与聚合物的结构、溶剂的性质、溶液的浓度及温度和压力等因素有关,它的数值越大,表明溶液的粘度越大。
1、温度对聚丙烯酰胺粘度的影响
温度是分子无规则热运动激烈程度的反映,分子的运动必须克服分子间的相互作用力,而分子间的相互作用,如分子间氢键、内摩擦、扩散、分子链取向、缠结等,直接影响粘度的大小,故高聚物溶液的粘度会随温度发生变化。温度改变对高聚物溶液粘度的影响是显著的。聚丙烯酰胺溶液的粘度随温度的升高而降低,其原因是高分子溶液的分散相粒子彼此纠缠形成网状结构的聚合体,温度越高时,网状结构越容易破坏,故其粘度下降。
2、水解时间对聚丙烯酰胺粘度的影响
聚丙烯酰胺溶液粘度随水解时间的延长而改变,水解时间短,粘度较小,这可能是由于高聚物还来不及形成网状结构所致;水解时间过长,粘度下降,这是聚丙烯酰胺在溶液中结构发生松解所致。部分水解聚丙烯酰胺溶于水后离解成带负电荷的大分子,分子间静电排斥作用以及同一分子上不同链节之间的阴离子排斥力导致分子在溶液中伸展并能使分子之间相互缠绕,这就是部分水解聚丙烯酰胺能使其溶液粘度明显增加的原因。
3、矿化度对聚丙烯酰胺粘度的影响
聚丙烯酰胺分子链中阳离子基团相对于阴离子基团数目较多,净电荷较多,极性较大,而H20是极性分子,根据相似相溶原理,聚合物水溶性较好,特性黏度较大;随着矿物质含量的增加,正的静电荷部分被阴离子包围形成离子氛,从而与周围正的静电荷结合,聚合物溶液极性减小,黏度减小;矿物质浓度继续增加,正、负离子基团形成分子内或分子间氢键的缔合作用(导致聚合物在水中的溶解性下降),同时加入的盐离子通过屏蔽正、负电荷,拆散正、负离子间缔合而使已形成的盐键受到破坏(导致聚合物在水中的溶解性增大),这两种作用相互竞争,使得聚合物溶液在较高的盐浓度(>0.06 mol/L)下粘度保持较小。
4、分子量对聚丙烯酰胺粘度的影响
聚丙烯酰胺溶液的粘度随高聚物分子量的增大而增大,这是由于高分子溶液的粘度由分子运动时分子间的相互作用产生。当聚合物相对分子质量约为106时,高分子线团开始相互渗透,足以影响对光的散射。含量稍高时机械缠结足以影响粘度。含量相当低时,聚合物溶液可视为网状结构,链间机械缠结和氢键共同形成网的节点。含量较高时,溶液含有许多链-链接触点,使高聚物溶液呈凝胶状。因此,高聚物相对分子质量越大,分子间越易形成链缠结,溶液的粘度越大。
16、氧化性是指物质得电子的能力。还原性指物质失去电子的能力。
17、螯合剂
金属原子或离子与含有两个或连两个以上配位原子的配位体作用,生成具有环状结构的络合物,该络合物叫做螯合物。能生成螯合物的这种配体物质叫螯合剂,也成为络合剂。
18、螯合剂有哪些
醋酸钙,氯化钙,柠檬酸及其钙、钾、钠盐及三乙酯二胺四乙酸的二钠及二钠钙盐,葡糖酸的钙、钠盐,磷酸及其一钙、一钾、二钾盐,酸式焦磷酸钠偏磷酸钠,硫酸钠钙,葡糖酸-δ-内酯,氧化硬脂精等,二醋酸一钠,酒石酸及其钾钠盐、钠盐,硫代酸钠,山梨糖醇等。
19、常见的氧化剂
常见的氧化剂中,氟气的氧化性最强,相应的,氟离子的还原性最弱,实际上,仅有少数化合物能氧化氟离子生成氟气,且基本为歧化反应。
凡品名中有"高"、"重"、“过”字的,如高氯酸盐、高锰酸盐、重铬酸盐,过氧化钠等,都属于此类物质。常见的氧化剂有氧气(或空气)、氯气、重铬酸钠、重铬酸钾、高锰酸钾、硝酸等[4]  。 常见的这类物质有:
氯酸盐:ClO3-;高氯酸盐:ClO4-;无机过氧化物:Na2O2、K2O2、MgO2、CaO2、BaO2、H2O2;硝酸盐:NO3-;高锰酸盐:MnO4-。
举例:
  • 典型的非金属单质如F2、Cl2、O2、Br2、I2、S、Si等(其氧化性强弱与非金属活动性基本一致);
  • 含有变价元素的高价化合物,如KMnO4、KClO3、浓 H2SO4 、HNO3、MnO2 、FeCl3等;
  • 金属阳离子如:Fe3+、Cu2+等。
    根据物质的得电子能力强弱,可将其分为强氧化剂、中等强度氧化剂与弱氧化剂,以大致描述其在氧化还原反应中的表现。然而这个分类的界线是模糊的,有时以氧气(O2/H2O,E∅=1.229V[2]  )和铁离子(Fe3+/Fe2+,E∅=0.771V[2]  )为界,氧化性超过氧气的物种为强氧化剂,弱于铁离子的为弱氧化剂,介于两者之间的为中等强度氧化剂。
    按其危险性大小,分为一级氧化剂和二级氧化剂。
    氧化剂按照化学组成分为无机氧化剂和有机氧化剂。又可按照氧化反应所要求的介质分为以下3类:
    (1)酸性介质氧化剂(过氧化氢、过氧乙酸、重铬酸钠、铬酸、硝酸、高锰酸钾、过硫酸铵)。
    (2)碱性介质氧化剂(次氯酸钠、过碳酸钠、过硼酸钠、过硼酸钾)。
    (3)中性氧化剂(溴、碘)。
20、氧化-还原反应 (oxidation-reduction reaction, 也作redox reaction)是化学反应前后,元素的氧化数有变化的一类反应。[1] 氧化还原反应的实质是电子的得失或共用电子对的偏移。 氧化还原反应是化学反应中的三大基本反应之一(另外两个为(路易斯)酸碱反应与自由基反应)[2]  。自然界中的燃烧,呼吸作用,光合作用,生产生活中的化学电池金属冶炼火箭发射等等都与氧化还原反应息息相关。研究氧化还原反应,对人类的进步具有极其重要的意义。
18世纪末,化学家在总结许多物质与氧的反应后,发现这类反应具有一些相似特征,提出了氧化还原反应的概念:与氧化合的反应,称为氧化反应;从含氧化合物中夺取氧的反应,称为还原反应。随着化学的发展,人们发现许多反应与经典定义上的氧化还原反应有类似特征,19世纪发展化合价的概念后,化合价升高的一类反应并入氧化反应,化合价降低的一类反应并入还原反应。20世纪初,成键的电子理论被建立,于是又将失电子的半反应称为氧化反应,得电子的反应称为还原反应。[2] 
1948年,在价键理论和电负性的基础上,氧化数的概念被提出,1970年IUPAC对氧化数作出严格定义[1]氧化还原反应也得到了正式的定义:化学反应前后,元素的氧化数有变化的一类反应称作氧化还原反应。
21、相对原子质量
相对原子质量(
 
)是指以一个碳-12原子质量的1/12作为标准,任何一种原子的平均原子质量跟一个碳-12原子质量的1/12的比值,称为该原子的相对原子质量。[1]

 

posted on 2015-11-24 13:38  crhdyl  阅读(949)  评论(0编辑  收藏  举报

导航