【语言处理与Python】4.3风格的问题/4.4函数:结构化编程的基础/4.5更多关于函数

4.3风格的问题

详细请参考Python相关书籍或者资料。

4.4函数:结构化编程的基础

#怎样比较正规的写一个函数

import
re def get_text(file): “””Read text from a file,normailizing whites space and stripping HTML markup.””” text=….. …. return text

文档说明函数

docstring

def
accuracy(reference, test): """

Calculatethe fraction of test items that equal the correspondingreference items.
Givena list ofreference values and a corresponding list oftest values,
return the fraction of corresponding values that are equal.
In particular,return the fraction of indexes
{0<i<=len(test)}such that C{test[i]==reference[i]}.
>>>accuracy(['ADJ', 'N', 'V', 'N'], ['N', 'N', 'V', 'ADJ'])
0.5
@paramreference: Anordered list of reference values.
@typereference: C{list}
@paramtest: Alist of values to compareagainst the corresponding
reference values.
@typetest: C{list}
@rtype:C{float}
@raiseValueError:If C{reference}and C{length}donot have the
same length.
""" if len(reference) != len(test): raise ValueError("Listsmusthave the same length.") num_correct = 0 for x, yin izip(reference, test): if x==y: num_correct +=1 return float(num_correct) / len(reference

 

4.5更多关于函数

作为参数的函数

>>>sent = ['Take', 'care', 'of', 'the', 'sense', ',', 'and', 'the', ... 'sounds', 'will', 'take', 'care', 'of', 'themselves', '.'] >>>def extract_property(prop): ... return [prop(word) for wordin sent] ... >>>extract_property(len) [4, 4, 2,3, 5,1, 3,3, 6,4, 4,4, 2,10, 1] >>>def last_letter(word): ... return word[-1] >>>extract_property(last_letter) ['e', 'e', 'f', 'e', 'e', ',', 'd', 'e', 's', 'l', 'e', 'e', 'f', 's', '.']

注意,在这段代码中,last_letter作为参数传入了extract_property函数中。

Python提供了更多的方式来定义函数作为其他函数的参数,即:lambda表达式

这里有两个例子:

1、

>>>extract_property(lambda w:w[-1]) ['e', 'e', 'f', 'e', 'e', ',', 'd', 'e', 's', 'l', 'e', 'e', 'f', 's', '.']

2、

>>>sorted(sent) [',', '.', 'Take', 'and', 'care', 'care', 'of', 'of', 'sense', 'sounds', 'take', 'the', 'the', 'themselves', 'will'] >>>sorted(sent, cmp) [',', '.', 'Take', 'and', 'care', 'care', 'of', 'of', 'sense', 'sounds', 'take', 'the', 'the', 'themselves', 'will'] >>>sorted(sent, lambda x,y: cmp(len(y), len(x))) ['themselves', 'sounds', 'sense', 'Take', 'care', 'will', 'take', 'care', 'the', 'and', 'the', 'of', 'of', ',', '.']

 

累计函数

让我们先来对比两段代码:

1、

def
search1(substring, words): result = [] for wordin words: if substring in word: result.append(word) return result

2、

def
search2(substring, words): for wordin words: if substring in word: yield word

第2种方式是更好的,这种方法通常更有效。因为函数只产生调用程序需要的数据,并不需要分配额外的内存来存储输出。

高阶函数

offilter():

>>>def is_content_word(word): ... return word.lower()not in ['a', 'of', 'the', 'and', 'will', ',', '.'] >>>sent = ['Take', 'care', 'of', 'the', 'sense', ',', 'and', 'the', ... 'sounds', 'will', 'take', 'care', 'of', 'themselves', '.'] >>>filter(is_content_word, sent) ['Take', 'care', 'sense', 'sounds', 'take', 'care', 'themselves'] >>>[w for win sent if is_content_word(w)] ['Take', 'care', 'sense', 'sounds', 'take', 'care', 'themselves']

map():

在讨论这个函数之前,先来看两段程序:

1、

>>>lengths = map(len,nltk.corpus.brown.sents(categories='news')) >>>sum(lengths) / len(lengths) 21.7508111616

2、

>>>lengths = [len(w) for win nltk.corpus.brown.sents(categories='news'))] >>>sum(lengths) / len(lengths) 21.7508111616

两段代码的作用是一样的。

让我们再来看两段代码,体会一下:

1、

>>>map(lambdaw:len(filter(lambda c: c.lower() in "aeiou", w)),sent) [2, 2, 1,1, 2,0, 1,1, 2,1, 2,2, 1,3, 0]

 

 

 

2、

>>>[len([c for c in wif c.lower()in "aeiou"]) for win sent] [2, 2, 1,1, 2,0, 1,1, 2,1, 2,2, 1,3, 0]

参数的命名

关键字参数:我们给变量有了明确的名字

任意数量未命名参数:

 

def generic(*args,**kwargs):

    print args

    print kwargs

#得到的结果是:

generic(1,"African swallow", monty="python") 
(1, 'African swallow') 
{'monty':'python'}

 

 

 

 

posted @ 2013-05-24 23:24  createMoMo  阅读(349)  评论(0编辑  收藏  举报