网易一面:Eureka怎么AP?Nacos既CP又AP,怎么实现的?

文章很长,且持续更新,建议收藏起来,慢慢读!疯狂创客圈总目录 博客园版 为您奉上珍贵的学习资源 :

免费赠送 :《尼恩Java面试宝典》 持续更新+ 史上最全 + 面试必备 2000页+ 面试必备 + 大厂必备 +涨薪必备
免费赠送 :《尼恩技术圣经+高并发系列PDF》 ,帮你 实现技术自由,完成职业升级, 薪酬猛涨!加尼恩免费领
免费赠送 经典图书:《Java高并发核心编程(卷1)加强版》 面试必备 + 大厂必备 +涨薪必备 加尼恩免费领
免费赠送 经典图书:《Java高并发核心编程(卷2)加强版》 面试必备 + 大厂必备 +涨薪必备 加尼恩免费领
免费赠送 经典图书:《Java高并发核心编程(卷3)加强版》 面试必备 + 大厂必备 +涨薪必备 加尼恩免费领

免费赠送 资源宝库: Java 必备 百度网盘资源大合集 价值>10000元 加尼恩领取


网易一面:Eureka怎么AP?Nacos既CP又AP,怎么实现的?

说在前面

在40岁老架构师 尼恩的读者交流群(50+)中,最近有小伙伴拿到了一线互联网企业如网易、微博、阿里、汽车之家、极兔、有赞、希音、百度、滴滴的面试资格,遇到几个很重要的面试题:

  • Eureka是AP还是CP? 说说其集群数据一致性流程?
  • Nacos是AP还是CP? 说说其集群数据一致性流程?

与之类似的、其他小伙伴遇到过的问题还有:

  • Eureka怎么AP?Nacos既CP又AP,怎么实现的?

所以,这里尼恩给大家做一下系统化、体系化的梳理,使得大家可以充分展示一下大家雄厚的 “技术肌肉”,让面试官爱到 “不能自已、口水直流”

也一并把这个题目以及参考答案,收入咱们的 《尼恩Java面试宝典PDF》V112版本,供后面的小伙伴参考,提升大家的 3高 架构、设计、开发水平。

注:本文以 PDF 持续更新,最新尼恩 架构笔记、面试题 的PDF文件,请从公众号 【技术自由圈】获取。

本文目录

注册中心集群的数据一致性问题

服务注册中心必然是高可用的,这意味着它不能是单点的,而必须是一个注册中心集群。

接下来的问题是:

在一个微服务注册中心集群中,如何确保微服务 Provider 提供者的注册信息或元数据信息保持一致性?

首先,回顾一下CAP定理。

CAP定理

分布式系统中有一个重要理论:CAP。

  1. C:一致性(Consistency)

    在分布式系统中,数据会在多个副本中存在,一些问题可能导致在写入数据时,部分副本成功,部分副本失败,从而导致数据不一致。一致性 C 的要求是,数据更新操作成功后,多个副本的数据必须保持一致。

  2. A:可用性(Availability)

    无论何时,客户端对集群进行读写操作,请求都应能得到正常的响应。

  3. P:分区容错性(Partition Tolerance)

    当发生通信故障,集群被分割成多个无法通信的分区时,集群仍应能正常运行。

微服务注册中心是AP还是CP

回到微服务注册中心的场景。

微服务注册中心的中间件非常多,比如传统的分布式协调组件 Zookeeper, 比如 传统的微服务注册中心 Eureka,比如 阿里的微服务注册中心Nacos,还有 google的 分布式协调组件 etcd,等等。

微服务注册中心是AP还是CP?

首先要明确的是 Eureka 是AP 高并发类型,不是CP强一致类型,而是弱数据一致性的。

ZooKeeper 是CP类型的注册中心,就是尽可能的保证强数据一致性,ZooKeeper首先牺牲A,另外,在某些情况下可以牺牲可用性P。

所以, Eureka 与ZooKeeper 完全是两个极端。

Eureka 则选择了 A,ZooKeeper 优先选择了 C。

Eureka 具有高可用性,在任何时候,服务消费者都能正常获取服务列表,但不保证数据的强一致性,消费者可能会拿到过期的服务列表

Nacos 则做了兼容,既能支持AP模式,也能支持CP模式。

Spring Cloud Alibaba Nacos 在 1.0.0 正式支持 AP 和 CP 两种一致性协议,其中,CP 一致性协议的实现是基于简化的 Raft 协议的强一致性实现。

Eureka 的数据同步方式

多个副本之间的 复制方式

首先看看 数据同步的方式,或者说多个副本的 复制方式。
通常,分布式系统中的数据在多个副本间的复制方式,大体上可以分为以下两种:

  • 主从复制

这种是 Master-Slave 模式,存在一个 master 主副本,其他则是 Slave 从副本,所有的写操作都会被提交到主副本,然后由主副本更新到其他从副本。

因此,写压力都会聚集在主副本上,这成为了系统的瓶颈,而从副本则可以分担读请求。

  • 对等复制

这种是 Peer to Peer 模式,副本之间不存在主从之分,任何一个副本都可以接收写操作,然后各个副本之间会相互进行数据更新。

Peer to Peer 对等复制模式的优势:

任何一个副本都可以接收写请求,不存在写压力的瓶颈,但是在各个副本间进行数据同步时可能会出现数据冲突。

Eureka 就是采用了 Peer to Peer 模式。

Eureka 的Peer to Peer 模式同步过程

在 Eureka Server 启动之后,它会利用本地的 Eureka Client 向其他 Eureka Server 节点中的一个节点发起请求,以获取注册的服务信息,并将这些信息复制到其他 peer 节点。

每当 Eureka Server 的自身信息发生变化,例如微服务的客户端向它发起注册、续约或注销请求时,它会将最新的信息推送给其他 Eureka Server,以保持数据的同步性。

循环复制问题

当然,这里有一个问题: 循环复制问题。

具体来说,如果自身的信息变更是由另一个 Eureka Server 同步过来的,那么如果再将这些信息同步回去,就会出现数据同步的死循环。

在 Eureka Server 执行复制操作时,它会使用一个名为 HEADER_REPLICATION 的 http header 来区分复制操作。

如果一个请求携带了 HEADER_REPLICATION 这个 header,那么这个请求就不再是普通应用实例微服务的客户端的正常请求,而是来自其他 server 的复制请求。这样,当 Eureka Server 收到复制请求时,它就不会再执行复制操作,从而避免了死循环。

还有一个问题,就是数据冲突。

比如 server A 向 server B 发起同步请求,如果 A 的数据比 B 的还旧,那么 B 不可能接受 A 的数据。在这种情况下,B 如何知道 A 的数据是旧的呢?这时 A 又应该怎么办呢?

数据的新旧通常是通过版本号来定义的,Eureka 使用 lastDirtyTimestamp 这个类似版本号的属性来实现。

lastDirtyTimestamp 是注册中心中服务实例的一个属性,它表示此服务实例最近一次变更时间。

节点间的复制,可能会出错,如何进行错误的检测和弥补呢?

此外,Eureka 集群中,还有一个重要的机制:hearbeat 心跳,即续约操作,用于完成数据的最终修复。由于节点间复制可能出现错误,我们可以通过心 beat 机制来发现并修复这些错误。

总结一下,Eureka 的数据同步方式

  • Eureka 使用 Peer to Peer 模式进行数据复制。
  • Eureka 通过 http header就是 HEADER_REPLICATION 解决循环复制问题。
  • Eureka 通过 lastDirtyTimestamp 解决复制冲突。
  • Eureka 通过心跳机制实现数据修复。

Nacos 满足AP,又满足CP

与Eureka 、Zookeeper集群不同Nacos 既能支持AP,又能支持 CP。

Nacos 支持 CP+AP 模式,这意味着 Nacos 可以根据配置识别为 CP 模式或 AP 模式,默认情况下为 AP 模式。

  • 如果注册Nacos的client节点注册时ephemeral=true,那么Nacos集群对这个client节点的效果就是AP,采用distro协议实现;

  • 而注册Nacos的client节点注册时ephemeral=false,那么Nacos集群对这个节点的效果就是CP的,采用raft协议实现。

根据client注册时的属性,AP,CP同时混合存在,只是对不同的client节点效果不同。

因此,Nacos 能够很好地满足不同场景的业务需求。

快速了解Distro 协议

Distro 协议是 Nacos 自主研发的一种 AP 分布式协议,专为临时实例设计,确保在部分 Nacos 节点宕机时,整个临时实例仍可正常运行。

作为一款具有状态的中间件应用的内置协议,Distro 确保了各 Nacos 节点在处理大量注册请求时的统一协调和存储。

Distro 协议 与Eureka Peer to Peer 模式同步过程, 大致是类似的。

Distro 协议的同步过程,大致如下:

  • 每个节点是平等的都可以处理写请求,同时将新数据同步至其他节点。

  • 每个节点只负责部分数据,定时发送自己负责数据的校验值,到其他节点来保持数据⼀致性。

  • 每个节点独立处理读请求,并及时从本地发出响应。

接下来的几节将通过不同的场景介绍 Distro 协议的工作原理。

Distro 节点新加入集群场景

新加入的 Distro 节点,会进行全量数据拉取。

具体操作是依次访问所有 Distro 节点,通过向其他机器发送请求,来拉取全量数据

在完成全量拉取操作后,Nacos 的每台机器都维护了当前所有注册的非持久化实例数据。

心跳场景

在 Distro 集群启动后,各台机器之间会定期发送心跳。

心跳信息主要包括各机器上的所有数据的元信息(使用元信息是为了确保网络中数据传输量维持在较低水平)。这种数据校验以心跳形式进行,即每台机器在固定时间间隔内向其他机器发起一次数据校验请求。

如果在数据校验过程中,某台机器发现其他机器上的数据与本地数据不一致,会发起一次全量拉取请求,将数据补全。

写操作场景

对于⼀个已经启动完成的 Distro 集群,在⼀次客户端发起写操作的流程中,当注册非持久化的实例的写请求打到某台 Nacos 服务器时,Distro 集群处理的流程图如下。

整个步骤包括几个部分(图中从上到下顺序):

  • 前置的 Filter 拦截请求,并根据请求中包含的 IP 和 port 信息计算其所属的 Distro 责任节点,并将该请求转发到所属的 Distro 责任节点上。
  • 责任节点上的 Controller 对写请求进行解析。
  • Distro 协议定期执行 Sync 任务,将本机所负责的所有实例信息同步到其他节点上。

读操作场景

由于每台机器上都存储了全量数据,因此在每次读操作中,Distro 机器会直接从本地获取数据,实现快速响应。

这种机制确保了 Distro 协议可以作为 AP 协议,对读操作进行及时响应。

  • 在网络分区状况下,所有读操作仍可正常返回结果;

  • 当网络恢复时,各 Distro 节点会将各数据片段进行合并恢复。

总结一下,Distro 的数据同步

Distro 协议是 Nacos 针对临时实例数据开发的⼀致性协议。

数据存储在缓存中,并在启动时进行全量数据同步,定期执行数据校验

遵循 Distro 协议的设计理念,每个 Distro 节点均能接收读写请求。Distro 协议的请求场景主要分为以下三种情况:

  1. 当该节点接收到属于该节点负责的实例的写请求时,直接写入。
  2. 当该节点接收到不属于该节点负责的实例的写请求时,将在集群内部路由,转发给对应的节点,从而完成读写。
  3. 当该节点接收到任何读请求时,都直接在本机查询并返回(因为所有实例都被同步到了每台机器上)。

作为 Nacos 的内置临时实例一致性协议,Distro 协议确保了在分布式环境中,每个节点上的服务信息状态能够及时通知其他节点,支持数十万量级服务实例的存储和一致性维护。

快速了解Raft协议

Spring Cloud Alibaba Nacos 在 1.0.0 正式支持 AP 和 CP 两种一致性协议,其中的CP一致性协议实现,是基于简化的 Raft 的 CP 一致性。

Raft 适用于一个管理日志一致性的协议,相比于 Paxos 协议, Raft 更易于理解和去实现它。

为了提高理解性,Raft 将一致性算法分为了几个部分,包括领导选取(leader selection)、日志复制(log replication)、安全(safety),并且使用了更强的一致性来减少了必须需要考虑的状态。

相比Paxos,Raft算法理解起来更加直观。

Raft算法将Server划分为3种状态,或者也可以称作角色:

  • Leader: 负责Client交互和log复制,同一时刻系统中最多存在1个。
  • Follower:被动响应请求RPC,从不主动发起请求RPC。
  • Candidate:一种临时的角色,只存在于leader的选举阶段,某个节点想要变成leader,那么就发起投票请求,同时自己变成candidate。如果选举成功,则变为candidate,否则退回为follower

状态或者说角色的流转如下:

在Raft中,问题被分解为:领导选取、日志复制、安全和成员变化。

通过复制日志来实现状态机的复制:

日志:每台机器都保存一份日志,日志来源于客户端的请求,包含一系列的命令。

状态机:状态机会按顺序执行这些命令。

一致性模型:在分布式环境中,确保多台机器的日志保持一致,从而使状态机回放时的状态保持一致。

Raft算法选主流程

Raft中使用心跳机制来出发leader选举。当服务器启动的时候,服务器成为follower。只要follower从leader或者candidate收到有效的RPCs就会保持follower状态。如果follower在一段时间内(该段时间被称为election timeout)没有收到消息,则它会假设当前没有可用的leader,然后开启选举新leader的流程。

1.Term

Term的概念类比中国历史上的朝代更替,Raft 算法将时间划分成为任意不同长度的任期(term)。

任期用连续的数字进行表示。每一个任期的开始都是一次选举(election),一个或多个候选人尝试成为领导者。如果一个候选人赢得选举,它将在该任期的剩余时间内担任领导者。在某些情况下,选票可能会被平分,导致没有选出领导者,此时将开始新的任期并立即进行下一次选举。Raft 算法确保在给定的任期中只有一个领导者。

2.RPC

Raft 算法中服务器节点之间通信使用远程过程调用(RPCs),并且基本的一致性算法只需要两种类型的 RPCs,为了在服务器之间传输快照增加了第三种 RPC。

RPC有三种:

  • RequestVote RPC:候选人在选举期间发起
  • AppendEntries RPC:领导人发起的一种心跳机制,复制日志也在该命令中完成
  • InstallSnapshot RPC:领导者使用该RPC来发送快照给太落后的追随者

3.选举流程

(1)follower增加当前的term,转变为candidate。

(2)candidate投票给自己,并发送RequestVote RPC给集群中的其他服务器。

(3)收到RequestVote的服务器,在同一个term中,只会按照先到先得投票给至多一个candidate。且只会投票给log至少和自身一样新的candidate。

初始节点

Node1 转为 Candidate 发起选举

Node 确认选举

Node1 成为 leader,发送 Heartbeat

candidate节点保持(2)的状态,直到下面三种情况中的一种发生。

  • 该节点赢得选举,即收到大多数节点的投票,然后转变为 leader 状态。
  • 另一个服务器成为 leader,即收到合法心跳包(term 值大于或等于当前自身 term 值),然后转变为 follower 状态。
  • 一段时间后仍未确定胜者,此时会启动新一轮的选举。

为了解决当票数相同时无法确定 leader 的问题,Raft 使用随机选举超时时间。

4.日志复制

日志复制(Log Replication)的主要目的是确保节点的一致性,在此阶段执行的操作都是为了确保一致性和高可用性。

当 Leader 选举产生后,它开始负责处理客户端的请求。所有的事务(更新操作)请求都必须先由 Leader 处理。日志复制(Log Replication)就是为了确保执行相同的操作序列所做的工作。

在 Raft 中,当接收到客户端的日志(事务请求)后,先把该日志追加到本地的Log中,然后通过heartbeat把该Entry同步给其他Follower,Follower接收到日志后记录日志然后向Leader发送ACK,当Leader收到大多数(n/2+1)Follower的ACK信息后将该日志设置为已提交并追加到本地磁盘中,通知客户端并在下个heartbeat中Leader将通知所有的Follower将该日志存储在自己的本地磁盘中。

如何实现Raft算法

Nacos server在启动时,会通过RunningConfig.onApplicationEvent()方法调用RaftCore.init()方法。

启动选举

public static void init() throws Exception {
 
    Loggers.RAFT.info("initializing Raft sub-system");
 
    // 启动Notifier,轮询Datums,通知RaftListener
    executor.submit(notifier);
     
    // 获取Raft集群节点,更新到PeerSet中
    peers.add(NamingProxy.getServers());
 
    long start = System.currentTimeMillis();
 
    // 从磁盘加载Datum和term数据进行数据恢复
    RaftStore.load();
 
    Loggers.RAFT.info("cache loaded, peer count: {}, datum count: {}, current term: {}",
        peers.size(), datums.size(), peers.getTerm());
 
    while (true) {
        if (notifier.tasks.size() <= 0) {
            break;
        }
        Thread.sleep(1000L);
        System.out.println(notifier.tasks.size());
    }
 
    Loggers.RAFT.info("finish to load data from disk, cost: {} ms.", (System.currentTimeMillis() - start));
 
    GlobalExecutor.register(new MasterElection()); // Leader选举
    GlobalExecutor.register1(new HeartBeat()); // Raft心跳
    GlobalExecutor.register(new AddressServerUpdater(), GlobalExecutor.ADDRESS_SERVER_UPDATE_INTERVAL_MS);
 
    if (peers.size() > 0) {
        if (lock.tryLock(INIT_LOCK_TIME_SECONDS, TimeUnit.SECONDS)) {
            initialized = true;
            lock.unlock();
        }
    } else {
        throw new Exception("peers is empty.");
    }
 
    Loggers.RAFT.info("timer started: leader timeout ms: {}, heart-beat timeout ms: {}",
        GlobalExecutor.LEADER_TIMEOUT_MS, GlobalExecutor.HEARTBEAT_INTERVAL_MS);
}

在init方法主要做了如下几件事:

  1. 获取Raft集群节点 peers.add(NamingProxy.getServers());
  2. Raft集群数据恢复 RaftStore.load();
  3. Raft选举 GlobalExecutor.register(new MasterElection());
  4. Raft心跳 GlobalExecutor.register(new HeartBeat());
  5. Raft发布内容
  6. Raft保证内容一致性

选举流程

其中,raft集群内部节点间是通过暴露的Restful接口,代码在 RaftController 中。RaftController控制器是raft集群内部节点间通信使用的,具体的信息如下:

POST HTTP://{ip:port}/v1/ns/raft/vote : 进行投票请求

POST HTTP://{ip:port}/v1/ns/raft/beat : Leader向Follower发送心跳信息

GET HTTP://{ip:port}/v1/ns/raft/peer : 获取该节点的RaftPeer信息

PUT HTTP://{ip:port}/v1/ns/raft/datum/reload : 重新加载某日志信息

POST HTTP://{ip:port}/v1/ns/raft/datum : Leader接收传来的数据并存入

DELETE HTTP://{ip:port}/v1/ns/raft/datum : Leader接收传来的数据删除操作

GET HTTP://{ip:port}/v1/ns/raft/datum : 获取该节点存储的数据信息

GET HTTP://{ip:port}/v1/ns/raft/state : 获取该节点的状态信息{UP or DOWN}

POST HTTP://{ip:port}/v1/ns/raft/datum/commit : Follower节点接收Leader传来得到数据存入操作

DELETE HTTP://{ip:port}/v1/ns/raft/datum : Follower节点接收Leader传来的数据删除操作

GET HTTP://{ip:port}/v1/ns/raft/leader : 获取当前集群的Leader节点信息

GET HTTP://{ip:port}/v1/ns/raft/listeners : 获取当前Raft集群的所有事件监听者
RaftPeerSet

心跳机制

Raft中使用心跳机制来触发leader选举。

心跳定时任务是在GlobalExecutor 中,通过 GlobalExecutor.register(new HeartBeat())注册心跳定时任务,具体操作包括:

  • 重置Leader节点的heart timeout、election timeout;
  • sendBeat()发送心跳包
public class HeartBeat implements Runnable {
    @Override
    public void run() {
        try {

            if (!peers.isReady()) {
                return;
            }

            RaftPeer local = peers.local();
            local.heartbeatDueMs -= GlobalExecutor.TICK_PERIOD_MS;
            if (local.heartbeatDueMs > 0) {
                return;
            }

            local.resetHeartbeatDue();

            sendBeat();
        } catch (Exception e) {
            Loggers.RAFT.warn("[RAFT] error while sending beat {}", e);
        }
    }
}

简单说明了下Nacos中的Raft一致性实现,更详细的流程,可以下载源码,查看 RaftCore 进行了解。

源码可以通过以下地址检出:

git clone https://github.com/alibaba/nacos.git

说在最后

注册中心的 数据一致性 相关面试题,是非常常见的面试题。

以上的内容,如果大家能对答如流,如数家珍,基本上 面试官会被你 震惊到、吸引到。

在面试之前,建议大家系统化的刷一波 5000页《尼恩Java面试宝典PDF》,并且在刷题过程中,如果有啥问题,大家可以来 找 40岁老架构师尼恩交流。

最终,让面试官爱到 “不能自已、口水直流”。offer, 也就来了。

技术自由的实现路径:

实现你的 架构自由:

吃透8图1模板,人人可以做架构

10Wqps评论中台,如何架构?B站是这么做的!!!

阿里二面:千万级、亿级数据,如何性能优化? 教科书级 答案来了

峰值21WQps、亿级DAU,小游戏《羊了个羊》是怎么架构的?

100亿级订单怎么调度,来一个大厂的极品方案

2个大厂 100亿级 超大流量 红包 架构方案

… 更多架构文章,正在添加中

实现你的 响应式 自由:

响应式圣经:10W字,实现Spring响应式编程自由

这是老版本 《Flux、Mono、Reactor 实战(史上最全)

实现你的 spring cloud 自由:

Spring cloud Alibaba 学习圣经》 PDF

分库分表 Sharding-JDBC 底层原理、核心实战(史上最全)

一文搞定:SpringBoot、SLF4j、Log4j、Logback、Netty之间混乱关系(史上最全)

实现你的 linux 自由:

Linux命令大全:2W多字,一次实现Linux自由

实现你的 网络 自由:

TCP协议详解 (史上最全)

网络三张表:ARP表, MAC表, 路由表,实现你的网络自由!!

实现你的 分布式锁 自由:

Redis分布式锁(图解 - 秒懂 - 史上最全)

Zookeeper 分布式锁 - 图解 - 秒懂

实现你的 王者组件 自由:

队列之王: Disruptor 原理、架构、源码 一文穿透

缓存之王:Caffeine 源码、架构、原理(史上最全,10W字 超级长文)

缓存之王:Caffeine 的使用(史上最全)

Java Agent 探针、字节码增强 ByteBuddy(史上最全)

实现你的 面试题 自由:

4800页《尼恩Java面试宝典 》 40个专题

免费获取11个技术圣经PDF:

posted @ 2023-09-27 14:59  疯狂创客圈  阅读(1376)  评论(0编辑  收藏  举报