BlockingQueue - 秒懂

文章很长,而且持续更新,建议收藏起来,慢慢读!疯狂创客圈总目录 博客园版 为您奉上珍贵的学习资源 :

免费赠送 :《尼恩Java面试宝典》 持续更新+ 史上最全 + 面试必备 2000页+ 面试必备 + 大厂必备 +涨薪必备
免费赠送 经典图书:《Java高并发核心编程(卷1)加强版》 面试必备 + 大厂必备 +涨薪必备 加尼恩免费领
免费赠送 经典图书:《Java高并发核心编程(卷2)加强版》 面试必备 + 大厂必备 +涨薪必备 加尼恩免费领
免费赠送 经典图书:《Java高并发核心编程(卷3)加强版》 面试必备 + 大厂必备 +涨薪必备 加尼恩免费领
免费赠送 经典图书:尼恩Java面试宝典 最新版 面试必备 + 大厂必备 +涨薪必备 加尼恩免费领
免费赠送 资源宝库: Java 必备 百度网盘资源大合集 价值>10000元 加尼恩领取


JUC 高并发工具类(3文章)与高并发容器类(N文章) :


1、Queue简介

问:什么是队列?

Queue(队列):一种特殊的线性表,它只允许在表的前端(front)进行删除操作,只允许在表的后端(rear)进行插入操作。进行插入操作的端称为队尾,进行删除操作的端称为队头。
在这里插入图片描述

说明:本文会以pdf格式持续更新,更多最新尼恩3高pdf笔记,请从下面的链接获取:语雀 或者 码云

从上图我们可以很清楚看到,通过一个共享的队列,可以使得数据由队列的一端输入,从另外一端输出;常用的队列主要有以下两种:(当然通过不同的实现方式,还可以延伸出很多不同类型的队列,DelayQueue就是其中的一种)
  先进先出(FIFO):先插入的队列的元素也最先出队列,类似于排队的功能。从某种程度上来说这种队列也体现了一种公平性。
  后进先出(LIFO):后插入队列的元素最先出队列,这种队列优先处理最近发生的事件。

下面是Queue类的继承关系图:
在这里插入图片描述

图中我们可以看到,最上层是Collection接口,Queue满足集合类的所有方法:

add(E e):增加元素;
remove(Object o):删除元素;
clear():清除集合中所有元素;
size():集合元素的大小;
isEmpty():集合是否没有元素;
contains(Object o):集合是否包含元素o。

1.1 Queue的主要方法

Queue:队列的上层接口,提供了插入、删除、获取元素这3种类型的方法,而且对每一种类型都提供了两种方式,先来看看插入方法:

  • add(E e):插入元素到队尾,插入成功返回true,没有可用空间抛出异常 IllegalStateException。
  • offer(E e): 插入元素到队尾,插入成功返回true,否则返回false。

add和offer作为插入方法的唯一不同就在于队列满了之后的处理方式。add抛出异常,而offer返回false。

再来看看删除和获取元素方法(和插入方法类似):

  • remove():获取并移除队首的元素,该方法和poll方法的不同之处在于,如果队列为空该方法会抛出异常,而poll不会。
  • poll():获取并移除队首的元素,如果队列为空,返回null。
  • element():获取队列首的元素,该方法和peek方法的不同之处在于,如果队列为空该方法会抛出异常,而peek不会。
  • peek():获取队列首的元素,如果队列为空,返回null。

如果队列是空,remove和element方法会抛出异常,而poll和peek返回null。

当然,Queue只是单向队列,为了提供更强大的功能,JDK在1.6的时候新增了一个双向队列Deque,用来实现更灵活的队列操作。

1.2 Deque 的主要方法

Deque在Queue的基础上,增加了以下几个方法:

  • addFirst(E e):在前端插入元素,异常处理和add一样;
  • addLast(E e):在后端插入元素,和add一样的效果;
  • offerFirst(E e):在前端插入元素,异常处理和offer一样;
  • offerLast(E e):在后端插入元素,和offer一样的效果;
  • removeFirst():移除前端的一个元素,异常处理和remove一样;
  • removeLast():移除后端的一个元素,和remove一样的效果;
  • pollFirst():移除前端的一个元素,和poll一样的效果;
  • pollLast():移除后端的一个元素,异常处理和poll一样;
  • getFirst():获取前端的一个元素,和element一样的效果;
  • getLast():获取后端的一个元素,异常处理和element一样;
  • peekFirst():获取前端的一个元素,和peek一样的效果;
  • peekLast():获取后端的一个元素,异常处理和peek一样;
  • removeFirstOccurrence(Object o):从前端开始移除第一个是o的元素;
  • removeLastOccurrence(Object o):从后端开始移除第一个是o的元素;
  • push(E e):和addFirst一样的效果;
  • pop():和removeFirst一样的效果。

可以发现,其实很多方法的效果都是一样的,只不过名字不同。比如Deque为了实现Stack的语义,定义了push和pop两个方法。

说明:本文会以pdf格式持续更新,更多最新尼恩3高pdf笔记,请从下面的链接获取:语雀 或者 码云

2 BlockingQueue

在多线程领域:所谓阻塞,在某些情况下会挂起线程(即阻塞),一旦条件满足,被挂起的线程又会自动被唤醒。阻塞队列主要用在生产者/消费者的场景,下面这幅图展示了一个线程生产、一个线程消费的场景:

这里写图片描述

下面两幅图演示了BlockingQueue的两个常见阻塞场景:

img       

如上图所示:当队列中没有数据的情况下,消费者端的所有线程都会被自动阻塞(挂起),直到有数据放入队列。

img

如上图所示:当队列中填满数据的情况下,生产者端的所有线程都会被自动阻塞(挂起),直到队列中有空的位置,线程被自动唤醒。

这也是我们在多线程环境下,为什么需要BlockingQueue的原因。 多线程环境中,通过队列可以很容易实现数据共享,比如经典的“生产者”和“消费者”模型中,通过队列可以很便利地实现两者之间的数据共享。BlockingQueue最重要的也就是关于阻塞等待的几个方法,而这几个方法正好可以用来实现生产-消费的模型

d

负责生产的线程不断的制造新对象并插入到阻塞队列中,直到达到这个队列的上限值。队列达到上限值之后生产线程将会被阻塞,直到消费的线程对这个队列进行消费。同理,负责消费的线程不断的从队列中消费对象,直到这个队列为空,当队列为空时,消费线程将会被阻塞,除非队列中有新的对象被插入。

假设我们有若干生产者线程,另外又有若干个消费者线程。如果生产者线程需要把准备好的数据共享给消费者线程,利用队列的方式来传递数据,就可以很方便地解决他们之间的数据共享问题。但如果生产者和消费者在某个时间段内,万一发生数据处理速度不匹配的情况呢?理想情况下,如果生产者产出数据的速度大于消费者消费的速度,并且当生产出来的数据累积到一定程度的时候,那么生产者必须暂停等待一下(阻塞生产者线程),以便等待消费者线程把累积的数据处理完毕,反之亦然。然而,在concurrent包发布以前,在多线程环境下,我们每个程序员都必须去自己控制这些细节,尤其还要兼顾效率和线程安全,而这会给我们的程序带来不小的复杂度。好在此时,强大的concurrent包横空出世了,而他也给我们带来了强大的BlockingQueue。

2.1BlockingQueue的核心方法

1.放入数据

(1)offer(anObject):表示如果可能的话,将anObject加到BlockingQueue里,即如果BlockingQueue可以容纳,则返回true,否则返回false.(本方法不阻塞当前执行方法的线程);      
(2)offer(E o, long timeout, TimeUnit unit):可以设定等待的时间,如果在指定的时间内,还不能往队列中加入BlockingQueue,则返回失败。
(3)put(anObject):把anObject加到BlockingQueue里,如果BlockQueue没有空间,则调用此方法的线程被阻断直到BlockingQueue里面有空间再继续.

2 获取数据

(1)poll(time):取走BlockingQueue里排在首位的对象,若不能立即取出,则可以等time参数规定的时间,取不到时返回null;

(2)poll(long timeout, TimeUnit unit):从BlockingQueue取出一个队首的对象,如果在指定时间内,队列一旦有数据可取,则立即返回队列中的数据。否则直到时间超时还没有数据可取,返回失败。

(3)take():取走BlockingQueue里排在首位的对象,若BlockingQueue为空,阻断进入等待状态直到BlockingQueue有新的数据被加入;
(4)drainTo():一次性从BlockingQueue获取所有可用的数据对象(还可以指定获取数据的个数),通过该方法,可以提升获取数据效率;不需要多次分批加锁或释放锁。

说明:本文会以pdf格式持续更新,更多最新尼恩3高pdf笔记,请从下面的链接获取:语雀 或者 码云

3 BlockingQueue的类型

从图中我们可以知道实现了BlockingQueue的类有以下几个:

  • ArrayBlockingQueue:一个由数组结构组成的有界阻塞队列。

  • LinkedBlockingQueue:一个由链表结构组成的有界阻塞队列。

  • PriorityBlockingQueue:一个支持优先级排序的无界阻塞队列。

  • SynchronousQueue:一个不存储元素的阻塞队列。

  • DelayQueue:一个使用优先级队列实现的无界阻塞队列。

3.1. ArrayBlockingQueue

基于数组的阻塞队列实现,在ArrayBlockingQueue内部,维护了一个定长数组,以便缓存队列中的数据对象,这是一个常用的阻塞队列,除了一个定长数组外,ArrayBlockingQueue内部还保存着两个整形变量,分别标识着队列的头部和尾部在数组中的位置。
  ArrayBlockingQueue在生产者放入数据和消费者获取数据,都是共用同一个锁对象,由此也意味着两者无法真正并行运行,这点尤其不同于LinkedBlockingQueue;按照实现原理来分析,ArrayBlockingQueue完全可以采用分离锁,从而实现生产者和消费者操作的完全并行运行。
  Doug Lea之所以没这样去做,也许是因为ArrayBlockingQueue的数据写入和获取操作已经足够轻巧,以至于引入独立的锁机制,除了给代码带来额外的复杂性外,其在性能上完全占不到任何便宜。

ArrayBlockingQueue和LinkedBlockingQueue间还有一个明显的不同之处在于 :内存的使用上,前者在插入或删除元素时不会产生或销毁任何额外的对象实例,而后者则会生成一个额外的Node对象。这在长时间内需要高效并发地处理大批量数据的系统中,其对于GC的影响还是存在一定的区别。而在创建ArrayBlockingQueue时,我们还可以控制对象的内部锁是否采用公平锁,默认采用非公平锁。

arrayBlockingQueue和LinkedBlockingQueue间还有一个明显的不同之处在于 :arrayBlockingQueue采用读写同一个锁,所以没法实现读写并行。如果头部和尾部的锁分离,则可以实现读写并行,LinkedBlockingQueue就是。

3.2. LinkedBlockingQueue

基于链表的阻塞队列,同ArrayListBlockingQueue类似,其内部也维持着一个数据缓冲队列(该队列由一个链表构成),当生产者往队列中放入一个数据时,队列会从生产者手中获取数据,并缓存在队列内部,而生产者立即返回;只有当队列缓冲区达到最大值缓存容量时(LinkedBlockingQueue可以通过构造函数指定该值),才会阻塞生产者队列,直到消费者从队列中消费掉一份数据,生产者线程会被唤醒,反之对于消费者这端的处理也基于同样的原理。

而LinkedBlockingQueue之所以能够高效的处理并发数据,还因为其对于生产者端和消费者端分别采用了独立的锁来控制数据同步,这也意味着在高并发的情况下生产者和消费者可以并行地操作队列中的数据,以此来提高整个队列的并发性能。

作为开发者,我们需要注意的是,如果构造一个LinkedBlockingQueue对象,而没有指定其容量大小,LinkedBlockingQueue会默认一个类似无限大小的容量(Integer.MAX_VALUE),这样的话,如果生产者的速度一旦大于消费者的速度,也许还没有等到队列满阻塞产生,系统内存就有可能已被消耗殆尽了。

ArrayBlockingQueue和LinkedBlockingQueue是两个最普通也是最常用的阻塞队列,一般情况下,在处理多线程间的生产者消费者问题,使用这两个类足以。

3.3.DelayQueue

DelayQueue中的元素只有当其指定的延迟时间到了,才能够从队列中获取到该元素。DelayQueue是一个没有大小限制的队列,因此往队列中插入数据的操作(生产者)永远不会被阻塞,而只有获取数据的操作(消费者)才会被阻塞。
使用场景:
  DelayQueue使用场景较少,但都相当巧妙,常见的例子比如使用一个DelayQueue来管理一个超时未响应的连接队列。

3.4.PriorityBlockingQueue

基于优先级的阻塞队列(优先级的判断通过构造函数传入的Compator对象来决定),但需要注意的是PriorityBlockingQueue并不会阻塞数据生产者,而只会在没有可消费的数据时,阻塞数据的消费者。因此使用的时候要特别注意,生产者生产数据的速度绝对不能快于消费者消费数据的速度,否则时间一长,会最终耗尽所有的可用堆内存空间。在实现PriorityBlockingQueue时,内部控制线程同步的锁采用的是公平锁。

说明:本文会持续更新,更多最新尼恩3高笔记PDF,请从下面的链接获取:语雀 或者 码云

3.5.SynchronousQueue

一种无缓冲的等待队列,类似于无中介的直接交易,有点像原始社会中的生产者和消费者,生产者拿着产品去集市销售给产品的最终消费者,而消费者必须亲自去集市找到所要商品的直接生产者,如果一方没有找到合适的目标,那么对不起,大家都在集市等待。相对于有缓冲的BlockingQueue来说,少了一个中间经销商的环节(缓冲区),如果有经销商,生产者直接把产品批发给经销商,而无需在意经销商最终会将这些产品卖给那些消费者,由于经销商可以库存一部分商品,因此相对于直接交易模式,总体来说采用中间经销商的模式会吞吐量高一些(可以批量买卖);但另一方面,又因为经销商的引入,使得产品从生产者到消费者中间增加了额外的交易环节,单个产品的及时响应性能可能会降低。
 

 声明一个SynchronousQueue有两种不同的方式,它们之间有着不太一样的行为。公平模式和非公平模式的区别:

  • 如果采用公平模式:SynchronousQueue会采用公平锁,并配合一个FIFO队列来阻塞多余的生产者和消费者,从而体系整体的公平策略;
  • 如果是非公平模式(SynchronousQueue默认):SynchronousQueue采用非公平锁,同时配合一个LIFO队列来管理多余的生产者和消费者,而后一种模式,如果生产者和消费者的处理速度有差距,则很容易出现饥渴的情况,即可能有某些生产者或者是消费者的数据永远都得不到处理。

参考资料1:https://www.cnblogs.com/KingIceMou/p/8075343.html
参考资料2:https://blog.csdn.net/tonywu1992/article/details/83419448

说明:本文会以pdf格式持续更新,更多最新尼恩3高pdf笔记,请从下面的链接获取:语雀 或者 码云

posted @ 2020-11-05 22:37  疯狂创客圈  阅读(1596)  评论(0编辑  收藏  举报