disruptor 史上最全 之2:使用和原理图解
文章很长,而且持续更新,建议收藏起来,慢慢读!疯狂创客圈总目录 博客园版 为您奉上珍贵的学习资源 :
免费赠送 :《尼恩Java面试宝典》 持续更新+ 史上最全 + 面试必备 2000页+ 面试必备 + 大厂必备 +涨薪必备
免费赠送 经典图书:《Java高并发核心编程(卷1)加强版》 面试必备 + 大厂必备 +涨薪必备 加尼恩免费领
免费赠送 经典图书:《Java高并发核心编程(卷2)加强版》 面试必备 + 大厂必备 +涨薪必备 加尼恩免费领
免费赠送 经典图书:《Java高并发核心编程(卷3)加强版》 面试必备 + 大厂必备 +涨薪必备 加尼恩免费领
免费赠送 经典图书:《尼恩Java面试宝典 最新版》 面试必备 + 大厂必备 +涨薪必备 加尼恩免费领
免费赠送 资源宝库: Java 必备 百度网盘资源大合集 价值>10000元 加尼恩领取
disruptor 史上最全 系列文章:
作为Java领域最高性能的 队列,没有之一, 大家不光要懂,而是 需要深入骨髓的搞懂。
所以,给大家奉上了下面的三篇文章,并且配备了视频进行 详细介绍:
以上四篇博客,收录于 《Disruptor 红宝书:大厂必备,高端必备》
最新的内容,请参见 电子书《Disruptor 红宝书:大厂必备,高端必备》
领取《Disruptor 红宝书:大厂必备,高端必备》,加尼恩微信 ,请移步: 语雀 或者 码云
本文,给大家介绍 disruptor 使用和原理 。
1 disruptor 是什么?
Disruptor是英国外汇交易公司LMAX开发的一个高性能队列,研发的初衷是解决内存队列的延迟问题(在性能测试中发现竟然与I/O操作处于同样的数量级)。
基于Disruptor开发的系统单线程能支撑每秒600万订单,2010年在QCon演讲后,获得了业界关注。
2011年,企业应用软件专家Martin Fowler专门撰写长文介绍Disruptor。同年Disruptor还获得了Oracle官方的Duke大奖。
目前,包括Apache Storm、Camel、Log4j 2在内的很多知名项目都应用了Disruptor以获取高性能。
要深入了解 disruptor ,咱们从 Java的 内置队列开始介绍起。
2 Java内置队列的问题
介绍Disruptor之前,我们先来看一看常用的线程安全的内置队列有什么问题。
Java的内置队列如下表所示。
队列 | 有界性 | 锁 | 数据结构 |
---|---|---|---|
ArrayBlockingQueue | bounded | 加锁 | arraylist |
LinkedBlockingQueue | optionally-bounded | 加锁 | linkedlist |
ConcurrentLinkedQueue | unbounded | 无锁 | linkedlist |
LinkedTransferQueue | unbounded | 无锁 | linkedlist |
PriorityBlockingQueue | unbounded | 加锁 | heap |
DelayQueue | unbounded | 加锁 | heap |
队列的底层一般分成三种:数组、链表和堆。
其中,堆一般情况下是为了实现带有优先级特性的队列,暂且不考虑。
从数组和链表两种数据结构来看,两类结构如下:
-
基于数组线程安全的队列,比较典型的是ArrayBlockingQueue,它主要通过加锁的方式来保证线程安全;
-
基于链表的线程安全队列分成LinkedBlockingQueue和ConcurrentLinkedQueue两大类,前者也通过锁的方式来实现线程安全,而后者通过原子变量compare and swap(以下简称“CAS”)这种无锁方式来实现的。
和ConcurrentLinkedQueue一样,上面表格中的LinkedTransferQueue都是通过原子变量compare and swap(以下简称“CAS”)这种不加锁的方式来实现的
但是,对 volatile类型的变量进行 CAS 操作,存在伪共享问题,具体请参考专门的文章:
1 disruptor 史上最全 之1:伪共享 原理&性能对比实战
Disruptor 使用了类似上面的方案,解决了伪共享问题。
3 Disruptor框架是如何解决伪共享问题的?
在Disruptor中有一个重要的类Sequence,该类包装了一个volatile修饰的long类型数据value,
Sequence的结构和源码
无论是Disruptor中的基于数组实现的缓冲区RingBuffer,还是生产者,消费者,都有各自独立的Sequence,
Sequence的用途是啥呢?
-
在RingBuffer缓冲区中,Sequence标示着写入进度,例如每次生产者要写入数据进缓冲区时,都要调用RingBuffer.next()来获得下一个可使用的相对位置。
-
对于生产者和消费者来说,Sequence标示着它们的事件序号。
Sequence的结构图如下
来看看Sequence类的源码:
class LhsPadding {
protected long p1, p2, p3, p4, p5, p6, p7;
}
class Value extends LhsPadding {
protected volatile long value;
}
class RhsPadding extends Value {
protected long p9, p10, p11, p12, p13, p14, p15;
}
public class Sequence extends RhsPadding {
static final long INITIAL_VALUE = -1L;
private static final Unsafe UNSAFE;
private static final long VALUE_OFFSET;
static {
UNSAFE = Util.getUnsafe();
try {
VALUE_OFFSET = UNSAFE.objectFieldOffset(Value.class.getDeclaredField("value"));
} catch(final Exception e) {
throw new RuntimeException(e);
}
}
public Sequence() {
this(INITIAL_VALUE);
}
public Sequence(final long initialValue) {
UNSAFE.putOrderedLong(this, VALUE_OFFSET, initialValue);
}
}
Disruptor 的使用场景
Disruptor 它可以用来作为高性能的有界内存队列, 适用于两大场景:
- 生产者消费者场景
- 发布订阅 场景
生产者消费者场景。Disruptor的最常用的场景就是“生产者-消费者”场景,对场景的就是“一个生产者、多个消费者”的场景,并且要求顺序处理。
备注,这里和JCTool 的 MPSC 队列,刚好相反, MPSC 使用于多生产者,单消费者场景
发布订阅 场景:Disruptor也可以认为是观察者模式的一种实现, 实现发布订阅模式。
当前业界开源组件使用Disruptor的包括Log4j2、Apache Storm等,
实战:Disruptor 的 使用实例
我们从一个简单的例子开始学习Disruptor:
生产者传递一个long类型的值给消费者,而消费者消费这个数据的方式仅仅是把它打印出来。
定义一个Event和工厂
首先定义一个Event来包含需要传递的数据:
public class LongEvent {
private long value;
public long getValue() {
return value;
}
public void setValue(long value) {
this.value = value;
}
}
由于需要让Disruptor为我们创建事件,我们同时还声明了一个EventFactory来创建Event对象。
public class LongEventFactory implements EventFactory {
@Override
public Object newInstance() {
return new LongEvent();
}
}
定义事件处理器(消费者)
我们还需要一个事件消费者,也就是一个事件处理器。
这个例子中,事件处理器的工作,就是简单地把事件中存储的数据打印到终端:
/**
* 类似于消费者
* disruptor会回调此处理器的方法
*/
static class LongEventHandler implements EventHandler<LongEvent> {
@Override
public void onEvent(LongEvent longEvent, long l, boolean b) throws Exception {
System.out.println(longEvent.getValue());
}
}
disruptor会回调此处理器的方法
定义事件源(生产者)
事件都会有一个生成事件的源,类似于 生产者的角色,
如何产生事件,然后发出事件呢?
通过从 环形队列中 获取 序号, 通过序号获取 对应的 事件对象, 将数据填充到 事件对象,再通过 序号将 事件对象 发布出去。
一段生产者的代码如下:
// 事件生产者:业务代码
// 通过从 环形队列中 获取 序号, 通过序号获取 对应的 事件对象, 将数据填充到 事件对象,再通过 序号将 事件对象 发布出去。
static class LongEventProducer {
private final RingBuffer<LongEvent> ringBuffer;
public LongEventProducer(RingBuffer<LongEvent> ringBuffer) {
this.ringBuffer = ringBuffer;
}
/**
* onData用来发布事件,每调用一次就发布一次事件事件
* 它的参数会通过事件传递给消费者
*
* @param data
*/
public void onData(long data) {
// step1:通过从 环形队列中 获取 序号
//可以把ringBuffer看做一个事件队列,那么next就是得到下面一个事件槽
long sequence = ringBuffer.next();
try {
//step2: 通过序号获取 对应的 事件对象, 将数据填充到 事件对象,
//用上面的索引,取出一个空的事件用于填充
LongEvent event = ringBuffer.get(sequence);// for the sequence
event.setValue(data);
} finally {
//step3: 再通过 序号将 事件对象 发布出去。
//发布事件
ringBuffer.publish(sequence);
}
}
}
很明显的是:
当用一个简单队列来发布事件的时候会牵涉更多的细节,这是因为事件对象还需要预先创建。
发布事件最少需要三步:
step1:获取下一个事件槽。
如果我们使用RingBuffer.next()获取一个事件槽,那么一定要发布对应的事件。
step2: 通过序号获取 对应的 事件对象, 将数据填充到 事件对象,
step3: 再通过 序号将 事件对象 发布出去。
发布事件的时候要使用try/finnally保证事件一定会被发布
如果不能发布事件,那么就会引起Disruptor状态的混乱。
尤其是在多个事件生产者的情况下会导致事件消费者失速,从而不得不重启应用才能会恢复。
Disruptor 3.0提供了lambda式的API。
这样可以把一些复杂的操作放在Ring Buffer,所以在Disruptor3.0以后的版本最好使用Event Publisher或者Event Translator(事件转换器)来发布事件。
组装起来
最后一步就是把所有的代码组合起来完成一个完整的事件处理系统。
@org.junit.Test
public void testSimpleDisruptor() throws InterruptedException {
// 消费者线程池
Executor executor = Executors.newCachedThreadPool();
// 事件工厂
LongEventFactory eventFactory = new LongEventFactory();
// 环形队列大小,2的指数
int bufferSize = 1024;
// 构造 分裂者 (事件分发者)
Disruptor<LongEvent> disruptor = new Disruptor<LongEvent>(eventFactory, bufferSize, executor);
// 连接 消费者 处理器
disruptor.handleEventsWith(new LongEventHandler());
// 开启 分裂者(事件分发)
disruptor.start();
// 获取环形队列,用于生产 事件
RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();
LongEventProducer producer = new LongEventProducer(ringBuffer);
for (long i = 0; true; i++) {
//发布事件
producer.onData(i);
Thread.sleep(1000);
}
}
事件转换器
Disruptor3.0以后 , 提供了事件转换器, 帮助填充 LongEvent 的业务数据
下面是一个例子
static class LongEventProducerWithTranslator {
//一个translator可以看做一个事件初始化器,publicEvent方法会调用它
//填充Event
private static final EventTranslatorOneArg<LongEvent, Long> TRANSLATOR =
new EventTranslatorOneArg<LongEvent, Long>() {
public void translateTo(LongEvent event, long sequence, Long data) {
event.setValue(data);
}
};
private final RingBuffer<LongEvent> ringBuffer;
public LongEventProducerWithTranslator(RingBuffer<LongEvent> ringBuffer) {
this.ringBuffer = ringBuffer;
}
public void onData(Long data) {
ringBuffer.publishEvent(TRANSLATOR, data);
}
}
使用事件转换器的好处,省了从 环形队列 获取 序号, 然后拿到事件 填充数据, 再发布序号 中的第二步骤
给 事件 填充 数据 的动作,在 EventTranslatorOneArg 完成
Disruptor提供了不同的接口去产生一个Translator对象:
- EventTranslator,
- EventTranslatorOneArg,
- EventTranslatorTwoArg,
很明显,Translator中方法的参数是通过RingBuffer来传递的。
使用 事件转换器 转换器的进行事件的 生产与消费 代码,大致如下:
@org.junit.Test
public void testSimpleDisruptorWithTranslator() throws InterruptedException {
// 消费者线程池
Executor executor = Executors.newCachedThreadPool();
// 事件工厂
LongEventFactory eventFactory = new LongEventFactory();
// 环形队列大小,2的指数
int bufferSize = 1024;
// 构造 分裂者 (事件分发者)
Disruptor<LongEvent> disruptor = new Disruptor<LongEvent>(eventFactory, bufferSize, executor);
// 连接 消费者 处理器
disruptor.handleEventsWith(new LongEventHandler());
// 开启 分裂者(事件分发)
disruptor.start();
// 获取环形队列,用于生产 事件
RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();
LongEventProducerWithTranslator producer = new LongEventProducerWithTranslator(ringBuffer);
for (long i = 0; true; i++) {
//发布事件
producer.onData(i);
Thread.sleep(1000);
}
}
上面写法的另一个好处是,Translator可以分离出来并且更加容易单元测试。
通过Java 8 Lambda使用Disruptor
Disruptor在自己的接口里面添加了对于Java 8 Lambda的支持。
大部分Disruptor中的接口都符合Functional Interface的要求(也就是在接口中仅仅有一个方法)。
所以在Disruptor中,可以广泛使用Lambda来代替自定义类。
@org.junit.Test
public void testSimpleDisruptorWithLambda() throws InterruptedException {
// 消费者线程池
Executor executor = Executors.newCachedThreadPool();
// 环形队列大小,2的指数
int bufferSize = 1024;
// 构造 分裂者 (事件分发者)
Disruptor<LongEvent> disruptor = new Disruptor<LongEvent>(LongEvent::new, bufferSize, executor);
// 连接 消费者 处理器
// 可以使用lambda来注册一个EventHandler
disruptor.handleEventsWith((event, sequence, endOfBatch) -> System.out.println("Event: " + event.getValue()));
// 开启 分裂者(事件分发)
disruptor.start();
// 获取环形队列,用于生产 事件
RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();
LongEventProducerWithTranslator producer = new LongEventProducerWithTranslator(ringBuffer);
for (long i = 0; true; i++) {
//发布事件
producer.onData(i);
Thread.sleep(1000);
}
}
由于在Java 8中方法引用也是一个lambda,因此还可以把上面的代码改成下面的代码:
public static void handleEvent(LongEvent event, long sequence, boolean endOfBatch)
{
System.out.println(event.getValue());
}
@org.junit.Test
public void testSimpleDisruptorWithMethodRef() throws InterruptedException {
// 消费者线程池
Executor executor = Executors.newCachedThreadPool();
// 环形队列大小,2的指数
int bufferSize = 1024;
// 构造 分裂者 (事件分发者)
Disruptor<LongEvent> disruptor = new Disruptor<LongEvent>(LongEvent::new, bufferSize, executor);
// 连接 消费者 处理器
// 可以使用lambda来注册一个EventHandler
disruptor.handleEventsWith(LongEventDemo::handleEvent);
// 开启 分裂者(事件分发)
disruptor.start();
// 获取环形队列,用于生产 事件
RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();
LongEventProducerWithTranslator producer = new LongEventProducerWithTranslator(ringBuffer);
for (long i = 0; true; i++) {
//发布事件
producer.onData(i);
Thread.sleep(1000);
}
}
}
构造Disruptor对象的几个要点
在构造Disruptor对象,有几个核心的要点:
1:事件工厂(Event Factory)定义了如何实例化事件(Event),Disruptor 通过 EventFactory 在 RingBuffer 中预创建 Event 的实例。
2:ringBuffer这个数组的大小,一般根据业务指定成2的指数倍。
3:消费者线程池,事件的处理是在构造的线程池里来进行处理的。
4:指定等待策略,Disruptor 定义了 com.lmax.disruptor.WaitStrategy 接口用于抽象 Consumer 如何等待Event事件。
Disruptor 提供了多个 WaitStrategy 的实现,每种策略都具有不同性能和优缺点,根据实际运行环境的 CPU 的硬件特点选择恰当的策略,并配合特定的 JVM 的配置参数,能够实现不同的性能提升。
- BlockingWaitStrategy 是最低效的策略,但其对CPU的消耗最小并且在各种不同部署环境中能提供更加一致的性能表现;
- SleepingWaitStrategy 的性能表现跟 BlockingWaitStrategy 差不多,对 CPU 的消耗也类似,但其对生产者线程的影响最小,适合用于异步日志类似的场景;
- YieldingWaitStrategy 的性能是最好的,适合用于低延迟的系统。在要求极高性能且事件处理线数小于 CPU 逻辑核心数的场景中,推荐使用此策略;。
Disruptor如何实现高性能?
使用Disruptor,主要用于对性能要求高、延迟低的场景,它通过“榨干”机器的性能来换取处理的高性能。
Disruptor实现高性能主要体现了去掉了锁,采用CAS算法,同时内部通过环形队列实现有界队列。
-
环形数据结构
数组元素不会被回收,避免频繁的GC,所以,为了避免垃圾回收,采用数组而非链表。同时,数组对处理器的缓存机制更加友好。
-
元素位置定位
数组长度2^n,通过位运算,加快定位的速度。下标采取递增的形式。不用担心index溢出的问题。
index是long类型,即使100万QPS的处理速度,也需要30万年才能用完。
-
无锁设计
采用CAS无锁方式,保证线程的安全性
每个生产者或者消费者线程,会先申请可以操作的元素在数组中的位置,申请到之后,直接在该位置写入或者读取数据。整个过程通过原子变量CAS,保证操作的线程安全。
-
属性填充:
通过添加额外的无用信息,避免伪共享问题
Disruptor和BlockingQueue比较:
- BlockingQueue: FIFO队列.生产者Producer向队列中发布publish一个事件时,消费者Consumer能够获取到通知.如果队列中没有消费的事件,消费者就会被阻塞,直到生产者发布新的事件
- Disruptor可以比BlockingQueue做到更多:
- Disruptor队列中同一个事件可以有多个消费者,消费者之间既可以并行处理,也可以形成依赖图相互依赖,按照先后次序进行处理
- Disruptor可以预分配用于存储事件内容的内存空间
- Disruptor使用极度优化和无锁的设计实现极高性能的目标
如果你的项目有对性能要求高,对延迟要求低的需求,并且需要一个无锁的有界队列,来实现生产者/消费者模式,那么Disruptor是你的不二选择。
原理:Disruptor 的内部Ring Buffer环形队列
RingBuffer是什么
RingBuffer 是一个环(首尾相连的环),用做在不同上下文(线程)间传递数据的buffer。
RingBuffer 拥有一个序号,这个序号指向数组中下一个可用元素。
Disruptor使用环形队列的优势:
Disruptor框架就是一个使用CAS操作的内存队列,与普通的队列不同,
Disruptor框架使用的是一个基于数组实现的环形队列,无论是生产者向缓冲区里提交任务,还是消费者从缓冲区里获取任务执行,都使用CAS操作。
使用环形队列的优势:
第一,简化了多线程同步的复杂度。
学数据结构的时候,实现队列都要两个指针head和tail来分别指向队列的头和尾,对于一般的队列是这样,
想象下,如果有多个生产者同时往缓冲区队列中提交任务,某一生产者提交新任务后,tail指针都要做修改的,那么多个生产者提交任务,头指针不会做修改,但会对tail指针产生冲突,
例如某一生产者P1要做写入操作,在获得tail指针指向的对象值V后,执行compareAndSet()方法前,tail指针被另一生产者P2修改了,这时生产者P1执行compareAndSet()方法,发现tail指针指向的值V和期望值E不同,导致冲突。
同样,如果多个消费者不断从缓冲区中获取任务,不会修改尾指针,但会造成队列头指针head的冲突问题(因为队列的FIFO特点,出列会从头指针出开始)。
环形队列的一个特点就是只有一个指针,只通过一个指针来实现出列和入列操作。
如果使用两个指针head和tail来管理这个队列,有可能会出现“伪共享”问题(伪共享问题在下面我会详细说),
因为创建队列时,head和tail指针变量常常在同一个缓存行中,多线程修改同一缓存行中的变量就容易出现伪共享问题。
第二,由于使用的是环形队列,那么队列创建时大小就被固定了,
Disruptor框架中的环形队列本来也就是基于数组实现的,使用数组的话,减少了系统对内存空间管理的压力,
因为数组不像链表,Java会定期回收链表中一些不再引用的对象,而数组不会出现空间的新分配和回收问题。
关闭Disruptor
- disruptor.shutdown() : 关闭Disruptor. 方法会阻塞,直至所有的事件都得到处理
- executor.shutdown() : 关闭Disruptor使用的线程池. 如果线程池需要关闭,必须进行手动关闭 ,Disruptor在shutdown时不会自动关闭使用的线程池