1- 进程
进程的创建-fork
1. 进程 VS 程序
编写完毕的代码,在没有运行的时候,称之为程序
正在运行着的代码,就成为进程
进程,除了包含代码以外,还有需要运行的环境等,所以和程序是有区别的
进程是系统分配资源的最小单位。
2. fork( )
Python的os模块封装了常见的系统调用,其中就包括fork,可以在Python程序中轻松创建子进程:
import os # 注意,fork函数,只在Unix/Linux/Mac上运行,windows不可以 pid = os.fork() if pid == 0: print('哈哈1') else: print('哈哈2')
运行结果:
说明:
- 程序执行到os.fork()时,操作系统会创建一个新的进程(子进程),然后复制父进程的所有信息到子进程中
- 然后父进程和子进程都会从fork()函数中得到一个返回值,在子进程中这个值一定是0,而父进程中是子进程的 id号
在Unix/Linux操作系统中,提供了一个fork()系统函数,它非常特殊。
普通的函数调用,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回。
子进程永远返回0,而父进程返回子进程的ID。
这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getppid()就可以拿到父进程的ID。
3. getpid()、getppid()
import os rpid = os.fork() if rpid<0: print("fork调用失败。") elif rpid == 0: print("我是子进程(%s),我的父进程是(%s)"%(os.getpid(),os.getppid())) x+=1 else: print("我是父进程(%s),我的子进程是(%s)"%(os.getpid(),rpid)) print("父子进程都可以执行这里的代码")
运行结果:
我是父进程(19360),我的子进程是(19361) 父子进程都可以执行这里的代码 我是子进程(19361),我的父进程是(19360) 父子进程都可以执行这里的代码
进程的回收-wait
创建进程是一种资源分配,当子进程被父进程创建后,在其执行完成结束后,应当由父进程及时回收。
1. os.wait()回收资源
os.wait()方法用来回收子进程占用的资源。
import os import time pid = os.fork() if pid == 0: for i in range(5): print("子进程%d工作中..." % os.getpid()) time.sleep(1) else: print("父进程%d waiting" % os.getpid()) # wait()会有两个返回值 # pid代表回收的子进程编号 # result代表子进程结束退出时的状态 (0表示正常退出) pid, result = os.wait() print("父进程回收的子进程pid:%s, result:%s" % (pid, result)) print("finished")
2. 孤儿进程
子进程还未运行完成,父进程就结束运行退出,留下的子进程就是孤儿进程。
父进程死掉后,孤儿进程会被别的进程收养,通常是init进程(pid为1)。
因为孤儿进程最终会被继父回收,所以没有什么危害性。
import os import time pid = os.fork() if pid == 0: for i in range(100): print("子进程%d工作中...父进程pid为%d" % (os.getpid(), os.getppid())) time.sleep(1) else: print("父进程%d为父先行一步,儿要保重" % os.getpid())
3. 僵尸进程
子进程运行完成,但是父进程迟迟没有进行回收,此时子进程实际上并没有退出,其仍然占用着系统资源,这样的子进程称为僵尸进程。
因为僵尸进程的资源一直未被回收,造成了系统资源的浪费,过多的僵尸进程将造成系统性能下降,所以应避免出现僵尸进程。
import os import time pid = os.fork() if pid == 0: print("子进程%d:儿子先行一步,父亲保重啊。。。" % os.getpid()) else: while True: print("父进程%d:吃个嫖赌中,就是不管儿子" % os.getpid()) time.sleep(1)
多进程修改全局变量
#coding=utf-8 import os import time num = 0 # 注意,fork函数,只在Unix/Linux/Mac上运行,windows不可以 pid = os.fork() if pid == 0: num+=1 print('哈哈1---num=%d'%num) else: time.sleep(1) num+=1 print('哈哈2---num=%d'%num)
运行结果:
总结:
- 多进程中,每个进程中所有数据(包括全局变量)都各有拥有一份,互不影响 (读时共享,写时复制)
multiprocessing
如果你打算编写多进程的服务程序,Unix/Linux无疑是正确的选择。由于Windows没有fork调用,难道在Windows上无法用Python编写多进程的程序?
由于Python是跨平台的,自然也应该提供一个跨平台的多进程支持。multiprocessing模块就是跨平台版本的多进程模块。
multiprocessing模块提供了一个Process类来代表一个进程对象,下面的例子演示了启动一个子进程并等待其结束:
#coding=utf-8 from multiprocessing import Process import os # 子进程要执行的代码 def run_proc(name): print('子进程运行中,name= %s ,pid=%d...' % (name, os.getpid())) if __name__=='__main__': print('父进程 %d.' % os.getpid()) p = Process(target=run_proc, args=('test',)) print('子进程将要执行') p.start() p.join() print('子进程已结束')
运行结果:
说明
- 创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,用start()方法启动,这样创建进程比fork()还要简单。
- join()方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。
Process语法结构如下:
Process([group [, target [, name [, args [, kwargs]]]]])
-
target:表示这个进程实例所调用对象;
-
args:表示调用对象的位置参数元组;
-
kwargs:表示调用对象的关键字参数字典;
-
name:为当前进程实例的别名;
-
group:大多数情况下用不到;
Process类常用方法:
-
is_alive():判断进程实例是否还在执行;
-
join([timeout]):是否等待进程实例执行结束,或等待多少秒;
-
start():启动进程实例(创建子进程);
-
run():如果没有给定target参数,对这个对象调用start()方法时,就将执行对象中的run()方法;
-
terminate():不管任务是否完成,立即终止;
Process类常用属性:
-
name:当前进程实例别名,默认为Process-N,N为从1开始递增的整数;
-
pid:当前进程实例的PID值;
实例1
from multiprocessing import Process import os from time import sleep # 子进程要执行的代码 def run_proc(name, age, **kwargs): for i in range(10): print('子进程运行中,name= %s,age=%d ,pid=%d...' % (name, age,os.getpid())) print(kwargs) sleep(0.5) if __name__=='__main__': print('父进程 %d.' % os.getpid()) p = Process(target=run_proc, args=('test',18), kwargs={"m":20}) print('子进程将要执行') p.start() sleep(1) p.terminate() p.join() print('子进程已结束')
运行结果:
父进程 21378. 子进程将要执行 子进程运行中,name= test,age=18 ,pid=21379... {'m': 20} 子进程运行中,name= test,age=18 ,pid=21379... {'m': 20} 子进程已结束
实例2
#coding=utf-8 from multiprocessing import Process import time import os #两个子进程将会调用的两个方法 def worker_1(interval): print("worker_1,父进程(%s),当前进程(%s)"%(os.getppid(),os.getpid())) t_start = time.time() time.sleep(interval) #程序将会被挂起interval秒 t_end = time.time() print("worker_1,执行时间为'%0.2f'秒"%(t_end - t_start)) def worker_2(interval): print("worker_2,父进程(%s),当前进程(%s)"%(os.getppid(),os.getpid())) t_start = time.time() time.sleep(interval) t_end = time.time() print("worker_2,执行时间为'%0.2f'秒"%(t_end - t_start)) #输出当前程序的ID print("进程ID:%s"%os.getpid()) #创建两个进程对象,target指向这个进程对象要执行的对象名称, #args后面的元组中,是要传递给worker_1方法的参数, #因为worker_1方法就一个interval参数,这里传递一个整数2给它, #如果不指定name参数,默认的进程对象名称为Process-N,N为一个递增的整数 p1=Process(target=worker_1,args=(2,)) p2=Process(target=worker_2,name="dongGe",args=(1,)) #使用"进程对象名称.start()"来创建并执行一个子进程, #这两个进程对象在start后,就会分别去执行worker_1和worker_2方法中的内容 p1.start() p2.start() #同时父进程仍然往下执行,如果p2进程还在执行,将会返回True print("p2.is_alive=%s"%p2.is_alive()) #输出p1和p2进程的别名和pid print("p1.name=%s"%p1.name) print("p1.pid=%s"%p1.pid) print("p2.name=%s"%p2.name) print("p2.pid=%s"%p2.pid) #join括号中不携带参数,表示父进程在这个位置要等待p1进程执行完成后, #再继续执行下面的语句,一般用于进程间的数据同步,如果不写这一句, #下面的is_alive判断将会是True,在shell(cmd)里面调用这个程序时 #可以完整的看到这个过程,大家可以尝试着将下面的这条语句改成p1.join(1), #因为p2需要2秒以上才可能执行完成,父进程等待1秒很可能不能让p1完全执行完成, #所以下面的print会输出True,即p1仍然在执行 p1.join() print("p1.is_alive=%s"%p1.is_alive())
执行结果:
进程ID:19866 p2.is_alive=True p1.name=Process-1 p1.pid=19867 p2.name=dongGe p2.pid=19868 worker_1,父进程(19866),当前进程(19867) worker_2,父进程(19866),当前进程(19868) worker_2,执行时间为'1.00'秒 worker_1,执行时间为'2.00'秒 p1.is_alive=False
进程的创建-Process子类
创建新的进程还能够使用类的方式,可以自定义一个类,继承Process类,每次实例化这个类的时候,就等同于实例化一个进程对象,请看下面的实例:
from multiprocessing import Process import time import os #继承Process类 class Process_Class(Process): #因为Process类本身也有__init__方法,这个子类相当于重写了这个方法, #但这样就会带来一个问题,我们并没有完全的初始化一个Process类,所以就不能使用从这个类继承的一些方法和属性, #最好的方法就是将继承类本身传递给Process.__init__方法,完成这些初始化操作 def __init__(self,interval): Process.__init__(self) self.interval = interval #重写了Process类的run()方法 def run(self): print("子进程(%s) 开始执行,父进程为(%s)"%(os.getpid(),os.getppid())) t_start = time.time() time.sleep(self.interval) t_stop = time.time() print("(%s)执行结束,耗时%0.2f秒"%(os.getpid(),t_stop-t_start)) if __name__=="__main__": t_start = time.time() print("当前程序进程(%s)"%os.getpid()) p1 = Process_Class(2) #对一个不包含target属性的Process类执行start()方法,就会运行这个类中的run()方法,所以这里会执行p1.run() p1.start() p1.join() t_stop = time.time() print("(%s)执行结束,耗时%0.2f"%(os.getpid(),t_stop-t_start))
进程池Pool
当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。
初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来执行,请看下面的实例:
from multiprocessing import Pool import os,time,random def worker(msg): t_start = time.time() print("%s开始执行,进程号为%d"%(msg,os.getpid())) #random.random()随机生成0~1之间的浮点数 time.sleep(random.random()*2) t_stop = time.time() print(msg,"执行完毕,耗时%0.2f"%(t_stop-t_start)) po=Pool(3) #定义一个进程池,最大进程数3 for i in range(0,10): #Pool.apply_async(要调用的目标,(传递给目标的参数元祖,)) #每次循环将会用空闲出来的子进程去调用目标 po.apply_async(worker,(i,)) print("----start----") po.close() #关闭进程池,关闭后po不再接收新的请求 po.join() #等待po中所有子进程执行完成,必须放在close语句之后 print("-----end-----")
运行结果:
----start---- 0开始执行,进程号为21466 1开始执行,进程号为21468 2开始执行,进程号为21467 0 执行完毕,耗时1.01 3开始执行,进程号为21466 2 执行完毕,耗时1.24 4开始执行,进程号为21467 3 执行完毕,耗时0.56 5开始执行,进程号为21466 1 执行完毕,耗时1.68 6开始执行,进程号为21468 4 执行完毕,耗时0.67 7开始执行,进程号为21467 5 执行完毕,耗时0.83 8开始执行,进程号为21466 6 执行完毕,耗时0.75 9开始执行,进程号为21468 7 执行完毕,耗时1.03 8 执行完毕,耗时1.05 9 执行完毕,耗时1.69 -----end-----
multiprocessing.Pool常用函数解析:
-
apply_async(func[, args[, kwds]]) :使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表;
-
apply(func[, args[, kwds]]):使用阻塞方式调用func
-
close():关闭Pool,使其不再接受新的任务;
-
terminate():不管任务是否完成,立即终止;
-
join():主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用;
apply堵塞式
from multiprocessing import Pool import os,time,random def worker(msg): t_start = time.time() print("%s开始执行,进程号为%d"%(msg,os.getpid())) #random.random()随机生成0~1之间的浮点数 time.sleep(random.random()*2) t_stop = time.time() print(msg,"执行完毕,耗时%0.2f"%(t_stop-t_start)) po=Pool(3) #定义一个进程池,最大进程数3 for i in range(0,10): po.apply(worker,(i,)) print("----start----") po.close() #关闭进程池,关闭后po不再接收新的请求 po.join() #等待po中所有子进程执行完成,必须放在close语句之后 print("-----end-----")
运行结果:
0开始执行,进程号为21532 0 执行完毕,耗时1.91 1开始执行,进程号为21534 1 执行完毕,耗时1.72 2开始执行,进程号为21533 2 执行完毕,耗时0.50 3开始执行,进程号为21532 3 执行完毕,耗时1.27 4开始执行,进程号为21534 4 执行完毕,耗时1.05 5开始执行,进程号为21533 5 执行完毕,耗时1.60 6开始执行,进程号为21532 6 执行完毕,耗时0.25 7开始执行,进程号为21534 7 执行完毕,耗时0.63 8开始执行,进程号为21533 8 执行完毕,耗时1.21 9开始执行,进程号为21532 9 执行完毕,耗时0.60 ----start---- -----end-----
异步
- 同步调用就是你 喊 你朋友吃饭 ,你朋友在忙 ,你就一直在那等,等你朋友忙完了 ,你们一起去
- 异步调用就是你 喊 你朋友吃饭 ,你朋友说知道了 ,待会忙完去找你 ,你就去做别的了。
from multiprocessing import Pool import time import os def test(): print("---进程池中的进程---pid=%d,ppid=%d--"%(os.getpid(),os.getppid())) for i in range(3): print("----%d---"%i) time.sleep(1) return "hahah" def test2(args): print("---callback func--pid=%d"%os.getpid()) print("---callback func--args=%s"%args) pool = Pool(3) pool.apply_async(func=test,callback=test2) time.sleep(5) print("----主进程-pid=%d----"%os.getpid())
运行结果:
---进程池中的进程---pid=9401,ppid=9400-- ----0--- ----1--- ----2--- ---callback func--pid=9400 ---callback func--args=hahah ----主进程-pid=9400----
进程间通信-Queue
Process之间有时需要通信,操作系统提供了很多机制来实现进程间的通信。
1. Queue的使用
可以使用multiprocessing模块的Queue实现多进程之间的数据传递,Queue本身是一个消息列队程序,首先用一个小实例来演示一下Queue的工作原理:
#coding=utf-8 from multiprocessing import Queue q=Queue(3) #初始化一个Queue对象,最多可接收三条put消息 q.put("消息1") q.put("消息2") print(q.full()) #False q.put("消息3") print(q.full()) #True #因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常 try: q.put("消息4",True,2) except: print("消息列队已满,现有消息数量:%s"%q.qsize()) try: q.put_nowait("消息4") except: print("消息列队已满,现有消息数量:%s"%q.qsize()) #推荐的方式,先判断消息列队是否已满,再写入 if not q.full(): q.put_nowait("消息4") #读取消息时,先判断消息列队是否为空,再读取 if not q.empty(): for i in range(q.qsize()): print(q.get_nowait())
运行结果:
False True 消息列队已满,现有消息数量:3 消息列队已满,现有消息数量:3 消息1 消息2 消息3
说明
初始化Queue()对象时(例如:q=Queue()),若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头);
-
Queue.qsize():返回当前队列包含的消息数量;
-
Queue.empty():如果队列为空,返回True,反之False ;
-
Queue.full():如果队列满了,返回True,反之False;
-
Queue.get([block[, timeout]]):获取队列中的一条消息,然后将其从列队中移除,block默认值为True;
1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出"Queue.Empty"异常;
2)如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常;
-
Queue.get_nowait():相当Queue.get(False);
-
Queue.put(item,[block[, timeout]]):将item消息写入队列,block默认值为True;
1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息列队腾出空间为止,如果设置了timeout,则会等待timeout秒,若还没空间,则抛出"Queue.Full"异常;
2)如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常;
- Queue.put_nowait(item):相当Queue.put(item, False);
2. Queue实例
我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:
from multiprocessing import Process, Queue import os, time, random # 写数据进程执行的代码: def write(q): for value in ['A', 'B', 'C']: print 'Put %s to queue...' % value q.put(value) time.sleep(random.random()) # 读数据进程执行的代码: def read(q): while True: if not q.empty(): value = q.get(True) print 'Get %s from queue.' % value time.sleep(random.random()) else: break if __name__=='__main__': # 父进程创建Queue,并传给各个子进程: q = Queue() pw = Process(target=write, args=(q,)) pr = Process(target=read, args=(q,)) # 启动子进程pw,写入: pw.start() # 等待pw结束: pw.join() # 启动子进程pr,读取: pr.start() pr.join() # pr进程里是死循环,无法等待其结束,只能强行终止: print '' print '所有数据都写入并且读完'
运行结果:
3. 进程池中的Queue
如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:
RuntimeError: Queue objects should only be shared between processes through inheritance.
下面的实例演示了进程池中的进程如何通信:
#coding=utf-8 #修改import中的Queue为Manager from multiprocessing import Manager,Pool import os,time,random def reader(q): print("reader启动(%s),父进程为(%s)"%(os.getpid(),os.getppid())) for i in range(q.qsize()): print("reader从Queue获取到消息:%s"%q.get(True)) def writer(q): print("writer启动(%s),父进程为(%s)"%(os.getpid(),os.getppid())) for i in "dongGe": q.put(i) if __name__=="__main__": print("(%s) start"%os.getpid()) q=Manager().Queue() #使用Manager中的Queue来初始化 po=Pool() #使用阻塞模式创建进程,这样就不需要在reader中使用死循环了,可以让writer完全执行完成后,再用reader去读取 po.apply(writer,(q,)) po.apply(reader,(q,)) po.close() po.join() print("(%s) End"%os.getpid())
运行结果:
(21156) start writer启动(21162),父进程为(21156) reader启动(21162),父进程为(21156) reader从Queue获取到消息:d reader从Queue获取到消息:o reader从Queue获取到消息:n reader从Queue获取到消息:g reader从Queue获取到消息:G reader从Queue获取到消息:e (21156) End