返回顶部

Redis 核心技术与实战 —— 基础

快速的Redis有哪些慢操作

数据库这么多,为啥 Redis 能有这么突出的表现呢?

一方面,这是因为它是内存数据库,所有操作都在内存上完成,内存的访问速度本身就很快。

另一方面,这要归功于它的数据结构。这是因为,键值对是按一定的数据结构来组织的,操作键值对最终就是对数据结构进行增删改查操作,所以高效的数据结构是 Redis 快速处理数据的基础。

 

redis 底层数据结构一共有 6 种:分别是简单动态字符串、双向链表、压缩列表、哈希表、跳表和整数数组

 

 String 类型的底层实现只有一种数据结构,也就是简单动态字符串。而 List、Hash、Set 和 Sorted Set 这四种数据类型,都有两种底层实现结构。通常情况下,我们会把这四种类型称为集合类型,它们的特点是一个键对应了一个集合的数据

这些数据结构都是值的底层实现,键和值本身之间用什么结构组织?

为了实现从键到值的快速访问,Redis 使用了一个哈希表来保存所有键值对。一个哈希表,其实就是一个数组,数组的每个元素称为一个哈希桶。所以,我们常说,一个哈希表是由多个哈希桶组成的,每个哈希桶中保存了键值对数据,哈希桶中的元素保存的并不是值本身,而是指向具体值的指针。

为什么集合类型有那么多的底层结构,它们都是怎么组织数据的,都很快吗?

当你往哈希表中写入更多数据时,哈希冲突是不可避免的问题。这里的哈希冲突,也就是指,两个 key 的哈希值和哈希桶计算对应关系时,正好落在了同一个哈希桶中。

Redis 解决哈希冲突的方式,就是链式哈希。链式哈希也很容易理解,就是指同一个哈希桶中的多个元素用一个链表来保存,它们之间依次用指针连接。

这里依然存在一个问题,哈希冲突链上的元素只能通过指针逐一查找再操作。如果哈希表里写入的数据越来越多,哈希冲突可能也会越来越多,这就会导致某些哈希冲突链过长,进而导致这个链上的元素查找耗时长,效率降低。对于追求“快”的 Redis 来说,这是不太能接受的。

为了避免这个问题,Redis 采用了渐进式 rehash。

所以,Redis 会对哈希表做 rehash 操作。rehash 也就是增加现有的哈希桶数量,让逐渐增多的 entry 元素能在更多的桶之间分散保存,减少单个桶中的元素数量,从而减少单个桶中的冲突。那具体怎么做呢?其实,为了使 rehash 操作更高效,Redis 默认使用了两个全局哈希表:哈希表 1 和哈希表 2。一开始,当你刚插入数据时,默认使用哈希表 1,此时的哈希表 2 并没有被分配空间。随着数据逐步增多,Redis 开始执行 rehash,这个过程分为三步:给哈希表 2 分配更大的空间,例如是当前哈希表 1 大小的两倍;把哈希表 1 中的数据重新映射并拷贝到哈希表 2 中;释放哈希表 1 的空间。

简单来说就是在第二步拷贝数据时,Redis 仍然正常处理客户端请求,每处理一个请求时,从哈希表 1 中的第一个索引位置开始,顺带着将这个索引位置上的所有 entries 拷贝到哈希表 2 中;等处理下一个请求时,再顺带拷贝哈希表 1 中的下一个索引位置的 entries。

redis 中的耗时操作有哪些和使用的建议

范围操作,是指集合类型中的遍历操作,可以返回集合中的所有数据,比如 Hash 类型的 HGETALL 和 Set 类型的 SMEMBERS,或者返回一个范围内的部分数据,比如 List 类型的 LRANGE 和 ZSet 类型的 ZRANGE。这类操作的复杂度一般是 O(N),比较耗时,我们应该尽量避免

我们不能忘了复杂度较高的 List 类型,它的两种底层实现结构:双向链表和压缩列表的操作复杂度都是 O(N)。因此,我的建议是:因地制宜地使用 List 类型。例如,既然它的 POP/PUSH 效率很高,那么就将它主要用于 FIFO 队列场景,而不是作为一个可以随机读写的集合。

为什么单线程Redis能那么快

Redis 是单线程,主要是指 Redis 的网络 IO 和键值对读写是由一个线程来完成的,这也是 Redis 对外提供键值存储服务的主要流程。但 Redis 的其他功能,比如持久化、异步删除、集群数据同步等,其实是由额外的线程执行的。 

基于多路复用的高性能 I/O 模型,在 Redis 只运行单线程的情况下,该机制允许内核中,同时存在多个监听套接字和已连接套接字。内核会一直监听这些套接字上的连接请求或数据请求。一旦有请求到达,就会交给 Redis 线程处理,这就实现了一个 Redis 线程处理多个 IO 流的效果。

AOF日志:宕机了,Redis如何避免数据丢失

目前,Redis 的持久化主要有两大机制,即 AOF(Append Only File)日志和 RDB 快照。

 传统数据库的日志,例如 redo log(重做日志),记录的是修改后的数据,而 AOF 里记录的是 Redis 收到的每一条命令,这些命令是以文本形式保存的。

,Redis 在向 AOF 里面记录日志的时候,并不会先去对这些命令进行语法检查。所以,如果先记日志再执行命令的话,日志中就有可能记录了错误的命令,Redis 在使用日志恢复数据时,就可能会出错。

日志文件太大了怎么办

AOF 文件是以追加的方式,逐一记录接收到的写命令的。当一个键值对被多条写命令反复修改时,AOF 文件会记录相应的多条命令。但是,在重写的时候,是根据这个键值对当前的最新状态,为它生成对应的写入命令。这样一来,一个键值对在重写日志中只用一条命令就行了,而且,在日志恢复时,只用执行这条命令,就可以直接完成这个键值对的写入了

AOF 重写会阻塞吗?

每次执行重写时,主线程 fork 出后台的 bgrewriteaof 子进程。此时,fork 会把主线程的内存拷贝一份给 bgrewriteaof 子进程,这里面就包含了数据库的最新数据。然后,bgrewriteaof 子进程就可以在不影响主线程的情况下,逐一把拷贝的数据写成操作,记入重写日志。

AOF 重写什么时候会触发呢?

有两个配置项在控制AOF重写的触发时机:

1. auto-aof-rewrite-min-size: 表示运行AOF重写时文件的最小大小,默认为64MB

2. auto-aof-rewrite-percentage: 这个值的计算方法是:当前AOF文件大小和上一次重写后AOF文件大小的差值,再除以上一次重写后AOF文件大小。也就是当前AOF文件比上一次重写后AOF文件的增量大小,和上一次重写后AOF文件大小的比值。 AOF文件大小同时超出上面这两个配置项时,会触发AOF重写

AOF 重写时,会把AOF 文件变小

总结来说,每次 AOF 重写时,Redis 会先执行一个内存拷贝,用于重写;然后,使用两个日志保证在重写过程中,新写入的数据不会丢失。而且,因为 Redis 采用额外的线程进行数据重写,所以,这个过程并不会阻塞主线程

内存快照:宕机后,Redis如何实现快速恢复?

redis 快照会阻塞主线程吗

bgsave:创建一个子进程,专门用于写入 RDB 文件,避免了主线程的阻塞,这也是 Redis RDB 文件生成的默认配置。

Redis 用于避免数据丢失的内存快照方法。这个方法的优势在于,可以快速恢复数据库,也就是只需要把 RDB 文件直接读入内存,这就避免了 AOF 需要顺序、逐一重新执行操作命令带来的低效性能问题。

频繁快照解决方案

而混合使用 RDB 和 AOF,正好可以取两者之长,避两者之短,以较小的性能开销保证数据可靠性和性能。第一次快照会把 AOF文件情况,之后的快照直接读取 AOF 文件

数据同步:主从库如何实现数据一致?

我们总说的 Redis 具有高可靠性,又是什么意思呢?

一是数据尽量少丢失,二是服务尽量少中断

AOF 和 RDB 保证了前者,而对于后者,Redis 的做法就是增加副本冗余量,将一份数据同时保存在多个实例上

主从库间网络断了怎么办?

主从库的连接恢复之后,从库首先会给主库发送 psync 命令,并把自己当前的 slave_repl_offset 发给主库,主库会判断自己的 master_repl_offset 和 slave_repl_offset 之间的差距。在网络断连阶段,主库可能会收到新的写操作命令,所以,一般来说,master_repl_offset 会大于 slave_repl_offset。此时,主库只用把 master_repl_offset 和 slave_repl_offset 之间的命令操作同步给从库就行。

总结来说,有三种模式:全量复制、基于长连接的命令传播,以及增量复制。

全量复制虽然耗时,但是对于从库来说,如果是第一次同步,全量复制是无法避免的。

长连接复制是主从库正常运行后的常规同步阶段。在这个阶段中,主从库之间通过命令传播实现同步。不过,这期间如果遇到了网络断连,增量复制就派上用场了。

哨兵机制:主库挂了,如何不间断服务?

 哨兵机制的基本流程

哨兵其实就是一个运行在特殊模式下的 Redis 进程,主从库实例运行的同时,它也在运行。哨兵主要负责的就是三个任务:监控、选主(选择主库)和通知。

哨兵会按照在线状态、网络状态,筛选过滤掉一部分不符合要求的从库,然后,依次按照优先级、复制进度、ID 号大小再对剩余的从库进行打分,只要有得分最高的从库出现,就把它选为新主库。

 

哨兵集群:哨兵挂了,主从库还能切换吗?

哨兵也是可以搭建集群的,挂了其中一个不影响

redis pub/sub 发布订阅

通过 pub/sub 机制,哨兵之间可以组成集群,同时,哨兵又通过 INFO 命令,获得了从库连接信息,也能和从库建立连接,并进行监控了。

支持哨兵集群的这些关键机制

1 基于 pub/sub 机制的哨兵集群组成过程;

2 基于 INFO 命令的从库列表,这可以帮助哨兵和从库建立连接;

3 基于哨兵自身的 pub/sub 功能,这实现了客户端和哨兵之间的事件通知。

切片集群:数据增多了,是该加内存还是加实例?

如果不是基于 RDB 的方式进行备份

Redis Cluster (数据分片存储)方案采用哈希槽来分布数据。

Redis Cluster 方案通过哈希槽的方式把键值对分配到不同的实例上,这个过程需要对键值对的 key 做 CRC 计算,然后再和哈希槽做映射

数据切片和实例的对应分布关系

Redis Cluster 方案采用哈希槽(Hash Slot,接下来我会直接称之为 Slot),来处理数据和实例之间的映射关系。在 Redis Cluster 方案中,一个切片集群共有 16384 个哈希槽,这些哈希槽类似于数据分区,每个键值对都会根据它的 key,被映射到一个哈希槽中。

 使用 cluster create 命令创建集群,此时,Redis 会自动把这些槽平均分布在集群实例上。例如,如果集群中有 N 个实例,那么,每个实例上的槽个数为 16384/N 个。

当然, 我们也可以使用 cluster meet 命令手动建立实例间的连接,形成集群,再使用 cluster addslots 命令,指定每个实例上的哈希槽个数。

在手动分配哈希槽时,需要把 16384 个槽都分配完,否则 Redis 集群无法正常工作。

客户端如何定位数据

在定位键值对数据时,它所处的哈希槽是可以通过计算得到的,这个计算可以在客户端发送请求时来执行。但是,要进一步定位到实例,还需要知道哈希槽分布在哪个实例上。

客户端为什么可以在访问任何一个实例时,都能获得所有的哈希槽信息呢?这是因为,Redis 实例会把自己的哈希槽信息发给和它相连接的其它实例,来完成哈希槽分配信息的扩散。当实例之间相互连接后,每个实例就有所有哈希槽的映射关系了。

为了负载均衡,Redis 需要把哈希槽在所有实例上重新分布一遍。

Redis Cluster 方案提供了一种重定向机制,

当客户端把一个键值对的操作请求发给一个实例时,如果这个实例上并没有这个键值对映射的哈希槽,那么,这个实例就会给客户端返回下面的 MOVED 命令响应结果,这个结果中就包含了新实例的访问地址。

 

posted @   Crazymagic  阅读(72)  评论(0编辑  收藏  举报
编辑推荐:
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
阅读排行:
· 终于写完轮子一部分:tcp代理 了,记录一下
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
点击右上角即可分享
微信分享提示

目录导航