elasticsearch—深入聚合分析
Bucket & Metric 聚合分析及嵌套聚合
Aggregation 的语法
Aggregation 属于 Search 的 一部分。一般情况下,建议将其 Size 指定为 0
Metric Aggregation
⼀个例⼦:⼯资统计信息
插入数据
DELETE /employees PUT /employees/ { "mappings": { "properties": { "age": { "type": "integer" }, "gender": { "type": "keyword" }, "job": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 50 } } }, "name": { "type": "keyword" }, "salary": { "type": "integer" } } } } PUT /employees/_bulk { "index" : { "_id" : "1" } } { "name" : "Emma","age":32,"job":"Product Manager","gender":"female","salary":35000 } { "index" : { "_id" : "2" } } { "name" : "Underwood","age":41,"job":"Dev Manager","gender":"male","salary": 50000} { "index" : { "_id" : "3" } } { "name" : "Tran","age":25,"job":"Web Designer","gender":"male","salary":18000 } { "index" : { "_id" : "4" } } { "name" : "Rivera","age":26,"job":"Web Designer","gender":"female","salary": 22000} { "index" : { "_id" : "5" } } { "name" : "Rose","age":25,"job":"QA","gender":"female","salary":18000 } { "index" : { "_id" : "6" } } { "name" : "Lucy","age":31,"job":"QA","gender":"female","salary": 25000} { "index" : { "_id" : "7" } } { "name" : "Byrd","age":27,"job":"QA","gender":"male","salary":20000 } { "index" : { "_id" : "8" } } { "name" : "Foster","age":27,"job":"Java Programmer","gender":"male","salary": 20000} { "index" : { "_id" : "9" } } { "name" : "Gregory","age":32,"job":"Java Programmer","gender":"male","salary":22000 } { "index" : { "_id" : "10" } } { "name" : "Bryant","age":20,"job":"Java Programmer","gender":"male","salary": 9000} { "index" : { "_id" : "11" } } { "name" : "Jenny","age":36,"job":"Java Programmer","gender":"female","salary":38000 } { "index" : { "_id" : "12" } } { "name" : "Mcdonald","age":31,"job":"Java Programmer","gender":"male","salary": 32000} { "index" : { "_id" : "13" } } { "name" : "Jonthna","age":30,"job":"Java Programmer","gender":"female","salary":30000 } { "index" : { "_id" : "14" } } { "name" : "Marshall","age":32,"job":"Javascript Programmer","gender":"male","salary": 25000} { "index" : { "_id" : "15" } } { "name" : "King","age":33,"job":"Java Programmer","gender":"male","salary":28000 } { "index" : { "_id" : "16" } } { "name" : "Mccarthy","age":21,"job":"Javascript Programmer","gender":"male","salary": 16000} { "index" : { "_id" : "17" } } { "name" : "Goodwin","age":25,"job":"Javascript Programmer","gender":"male","salary": 16000} { "index" : { "_id" : "18" } } { "name" : "Catherine","age":29,"job":"Javascript Programmer","gender":"female","salary": 20000} { "index" : { "_id" : "19" } } { "name" : "Boone","age":30,"job":"DBA","gender":"male","salary": 30000} { "index" : { "_id" : "20" } } { "name" : "Kathy","age":29,"job":"DBA","gender":"female","salary": 20000}
Metric 聚合,找到最低的工资
POST employees/_search { "size": 0, "aggs": { "min_salary": { "min": { "field": "salary" } } } }
Metric 聚合,找到最高的工资
POST employees/_search { "size": 0, "aggs": { "max_salary": { "max": { "field": "salary" } } } }
多个 Metric 聚合,找到最低最高和平均工资
POST employees/_search { "size": 0, "aggs": { "max_salary": { "max": { "field": "salary" } }, "min_salary": { "min": { "field": "salary" } }, "avg_salary": { "avg": { "field": "salary" } } } }
一个聚合,输出多值
POST employees/_search { "size": 0, "aggs": { "stats_salary": { "stats": { "field": "salary" } } } }
Bucket
Terms Aggregation
字段需要打开 fielddata,才能进⾏ Terms Aggregation
-
Keyword 默认⽀持 doc_values
-
Text 需要在 Mapping 中 enable。会按照分词后的结果进⾏分
对 job 和 job.keyword 进⾏聚合
POST employees/_search { "size": 0, "aggs": { "jobs": { "terms": { "field": "job.keyword" } } } }
对 Text 字段进行 terms 聚合查询,失败
POST employees/_search { "size": 0, "aggs": { "jobs": { "terms": { "field": "job" } } } }
对 Text 字段打开 fielddata,支持terms aggregation
PUT employees/_mapping { "properties": { "job": { "type": "text", "fielddata": true } } }
对 Text 字段进行 terms 分词。分词后的terms
POST employees/_search { "size": 0, "aggs": { "jobs": { "terms": { "field": "job" } } } }
Cardinality
类似 SQL 中的 Distinct count (去重分组数量)
POST employees/_search { "size": 0, "aggs": { "cardinate": { "cardinality": { "field": "job.keyword" } } } }
Bucket Size & Top Hits Demo
- 应⽤场景:当获取分桶后,桶内最匹配的顶部⽂档列表
Size:按年龄分桶,找出指定数据量的分桶信息,只获取分组后的前三组
POST employees/_search { "size": 0, "aggs": { "ages_5": { "terms": { "field": "age", "size": 3 } } } }
Top Hits:查看各个⼯种中,年纪最⼤的 3 名员⼯
POST employees/_search { "size": 0, "aggs": { "jobs": { "terms": { "field": "job.keyword" }, "aggs": { "old_employee": { "top_hits": { "size": 3, "_source": ["name", "job"], "sort": [ { "age": { "order": "desc" } } ] } } } } } }
Range & Histogram 聚合
按照数字的范围,进⾏分桶,在 Range Aggregation 中,可以⾃定义 Key
POST employees/_search { "size": 0, "aggs": { "salary_range": { "range": { "field": "salary", "ranges": [ { "to": 10000 }, { "from": 10000, "to": 20000 }, { "key": ">20000", "from": 20000 } ] } } } }
按照⼯资的间隔(Histogram)分桶,Salary Histogram,工资0到10万,以 5000一个区间进行分桶
POST employees/_search { "size": 0, "aggs": { "salary_histrogram": { "histogram": { "field": "salary", "interval": 5000, "extended_bounds": { "min": 0, "max": 100000 } } } } }
Bucket + Metric Aggregation
Bucket 聚合分析允许通过添加⼦聚合分析来进⼀步分析,⼦聚合分析可以是
-
Bucket
-
Metric
嵌套聚合1 按照工作类型分桶,并统计工资信息
POST employees/_search { "size": 0, "aggs": { "Job_salary_stats": { "terms": { "field": "job.keyword" }, "aggs": { "salary": { "stats": { "field": "salary" } } } } } }
多次嵌套,根据工作类型分桶,然后按照性别分桶,计算工资的统计信息
POST employees/_search { "size": 0, "aggs": { "Job_gender_stats": { "terms": { "field": "job.keyword" }, "aggs": { "gender_stats": { "terms": { "field": "gender" }, "aggs": { "salary_stats": { "stats": { "field": "salary" } } } } } } } }
相关阅读
Pipeline 聚合分析
管道的概念: ⽀持对聚合分析的结果,再次进⾏聚合分析
Pipeline 的分析结果会输出到原结果中,根据位置的不同,分为两类
- Sibling - 结果和现有分析结果同级
Max,min,Avg & Sum Bucket
Stats,Extended Status Bucket
Percentiles Bucket
- Parent - 结果内嵌到现有的聚合分析结果之中
Cumultive Sum (累计求和)
Derivative (求导)
Moving Function (滑动窗⼝)
数据导入
DELETE employees PUT /employees/_bulk { "index" : { "_id" : "1" } } { "name" : "Emma","age":32,"job":"Product Manager","gender":"female","salary":35000 } { "index" : { "_id" : "2" } } { "name" : "Underwood","age":41,"job":"Dev Manager","gender":"male","salary": 50000} { "index" : { "_id" : "3" } } { "name" : "Tran","age":25,"job":"Web Designer","gender":"male","salary":18000 } { "index" : { "_id" : "4" } } { "name" : "Rivera","age":26,"job":"Web Designer","gender":"female","salary": 22000} { "index" : { "_id" : "5" } } { "name" : "Rose","age":25,"job":"QA","gender":"female","salary":18000 } { "index" : { "_id" : "6" } } { "name" : "Lucy","age":31,"job":"QA","gender":"female","salary": 25000} { "index" : { "_id" : "7" } } { "name" : "Byrd","age":27,"job":"QA","gender":"male","salary":20000 } { "index" : { "_id" : "8" } } { "name" : "Foster","age":27,"job":"Java Programmer","gender":"male","salary": 20000} { "index" : { "_id" : "9" } } { "name" : "Gregory","age":32,"job":"Java Programmer","gender":"male","salary":22000 } { "index" : { "_id" : "10" } } { "name" : "Bryant","age":20,"job":"Java Programmer","gender":"male","salary": 9000} { "index" : { "_id" : "11" } } { "name" : "Jenny","age":36,"job":"Java Programmer","gender":"female","salary":38000 } { "index" : { "_id" : "12" } } { "name" : "Mcdonald","age":31,"job":"Java Programmer","gender":"male","salary": 32000} { "index" : { "_id" : "13" } } { "name" : "Jonthna","age":30,"job":"Java Programmer","gender":"female","salary":30000 } { "index" : { "_id" : "14" } } { "name" : "Marshall","age":32,"job":"Javascript Programmer","gender":"male","salary": 25000} { "index" : { "_id" : "15" } } { "name" : "King","age":33,"job":"Java Programmer","gender":"male","salary":28000 } { "index" : { "_id" : "16" } } { "name" : "Mccarthy","age":21,"job":"Javascript Programmer","gender":"male","salary": 16000} { "index" : { "_id" : "17" } } { "name" : "Goodwin","age":25,"job":"Javascript Programmer","gender":"male","salary": 16000} { "index" : { "_id" : "18" } } { "name" : "Catherine","age":29,"job":"Javascript Programmer","gender":"female","salary": 20000} { "index" : { "_id" : "19" } } { "name" : "Boone","age":30,"job":"DBA","gender":"male","salary": 30000} { "index" : { "_id" : "20" } } { "name" : "Kathy","age":29,"job":"DBA","gender":"female","salary": 20000}
Sibling 例子
平均工资最低的工作类型
POST employees/_search { "size": 0, "aggs": { "jobs": { "terms": { "field": "job.keyword", "size": 10 }, "aggs": { "avg_salary": { "avg": { "field": "salary" } } } }, "min_salary_by_job": { "min_bucket": { "buckets_path": "jobs>avg_salary" } } } }
平均工资最高的工作类型
POST employees/_search { "size": 0, "aggs": { "jobs": { "terms": { "field": "job.keyword", "size": 10 }, "aggs": { "avg_salary": { "avg": { "field": "salary" } } } }, "max_salary_by_job": { "max_bucket": { "buckets_path": "jobs>avg_salary" } } } }
平均工资的平均工资
POST employees/_search { "size": 0, "aggs": { "jobs": { "terms": { "field": "job.keyword", "size": 10 }, "aggs": { "avg_salary": { "avg": { "field": "salary" } } } }, "avg_salary_by_job": { "avg_bucket": { "buckets_path": "jobs>avg_salary" } } } }
平均工资的统计分析
POST employees/_search { "size": 0, "aggs": { "jobs": { "terms": { "field": "job.keyword", "size": 10 }, "aggs": { "avg_salary": { "avg": { "field": "salary" } } } }, "stats_salary_by_job": { "stats_bucket": { "buckets_path": "jobs>avg_salary" } } } }
平均工资的百分位数
POST employees/_search { "size": 0, "aggs": { "jobs": { "terms": { "field": "job.keyword", "size": 10 }, "aggs": { "avg_salary": { "avg": { "field": "salary" } } } }, "percentiles_salary_by_job":{ "percentiles_bucket": { "buckets_path": "jobs>avg_salary" } } } }
Parent Derivative
按照年龄对平均工资求导
POST employees/_search { "size": 0, "aggs": { "age": { "histogram": { "field": "age", "min_doc_count": 1, "interval": 1 }, "aggs": { "avg_salary": { "avg": { "field": "salary" } }, "derivative_avg_salary": { "derivative": { "buckets_path": "avg_salary" } } } } } }
聚合的作⽤范围及排序
聚合的作⽤范围
ES 聚合分析的默认作⽤范围是 query 的查询结果集
同时 ES 还⽀持以下⽅式改变聚合的作⽤范围
-
Filter
-
Post_Filter
-
Global
导入数据
DELETE /employees PUT /employees/ { "mappings": { "properties": { "age": { "type": "integer" }, "gender": { "type": "keyword" }, "job": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 50 } } }, "name": { "type": "keyword" }, "salary": { "type": "integer" } } } } PUT /employees/_bulk { "index" : { "_id" : "1" } } { "name" : "Emma","age":32,"job":"Product Manager","gender":"female","salary":35000 } { "index" : { "_id" : "2" } } { "name" : "Underwood","age":41,"job":"Dev Manager","gender":"male","salary": 50000} { "index" : { "_id" : "3" } } { "name" : "Tran","age":25,"job":"Web Designer","gender":"male","salary":18000 } { "index" : { "_id" : "4" } } { "name" : "Rivera","age":26,"job":"Web Designer","gender":"female","salary": 22000} { "index" : { "_id" : "5" } } { "name" : "Rose","age":25,"job":"QA","gender":"female","salary":18000 } { "index" : { "_id" : "6" } } { "name" : "Lucy","age":31,"job":"QA","gender":"female","salary": 25000} { "index" : { "_id" : "7" } } { "name" : "Byrd","age":27,"job":"QA","gender":"male","salary":20000 } { "index" : { "_id" : "8" } } { "name" : "Foster","age":27,"job":"Java Programmer","gender":"male","salary": 20000} { "index" : { "_id" : "9" } } { "name" : "Gregory","age":32,"job":"Java Programmer","gender":"male","salary":22000 } { "index" : { "_id" : "10" } } { "name" : "Bryant","age":20,"job":"Java Programmer","gender":"male","salary": 9000} { "index" : { "_id" : "11" } } { "name" : "Jenny","age":36,"job":"Java Programmer","gender":"female","salary":38000 } { "index" : { "_id" : "12" } } { "name" : "Mcdonald","age":31,"job":"Java Programmer","gender":"male","salary": 32000} { "index" : { "_id" : "13" } } { "name" : "Jonthna","age":30,"job":"Java Programmer","gender":"female","salary":30000 } { "index" : { "_id" : "14" } } { "name" : "Marshall","age":32,"job":"Javascript Programmer","gender":"male","salary": 25000} { "index" : { "_id" : "15" } } { "name" : "King","age":33,"job":"Java Programmer","gender":"male","salary":28000 } { "index" : { "_id" : "16" } } { "name" : "Mccarthy","age":21,"job":"Javascript Programmer","gender":"male","salary": 16000} { "index" : { "_id" : "17" } } { "name" : "Goodwin","age":25,"job":"Javascript Programmer","gender":"male","salary": 16000} { "index" : { "_id" : "18" } } { "name" : "Catherine","age":29,"job":"Javascript Programmer","gender":"female","salary": 20000} { "index" : { "_id" : "19" } } { "name" : "Boone","age":30,"job":"DBA","gender":"male","salary": 30000} { "index" : { "_id" : "20" } } { "name" : "Kathy","age":29,"job":"DBA","gender":"female","salary": 20000}
查询年龄大于20的,按照job分组
POST employees/_search { "size": 0, "query": { "range": { "age": { "gte": 20 } } }, "aggs": { "jobs": { "terms": { "field": "job.keyword" } } } }
Filter
POST employees/_search { "size": 0, "aggs": { "older_person": { "filter": { "range": { "age": { "from": 35 } } }, "aggs": { "jobs": { "terms": { "field": "job.keyword" } } } }, "all_jobs": { "terms": { "field": "job.keyword" } } } }
输出结果如下
{ "took" : 2, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 20, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "aggregations" : { "older_person" : { "doc_count" : 2, "jobs" : { "doc_count_error_upper_bound" : 0, "sum_other_doc_count" : 0, "buckets" : [ { "key" : "Dev Manager", "doc_count" : 1 }, { "key" : "Java Programmer", "doc_count" : 1 } ] } }, "all_jobs" : { "doc_count_error_upper_bound" : 0, "sum_other_doc_count" : 0, "buckets" : [ { "key" : "Java Programmer", "doc_count" : 7 }, { "key" : "Javascript Programmer", "doc_count" : 4 }, { "key" : "QA", "doc_count" : 3 }, { "key" : "DBA", "doc_count" : 2 }, { "key" : "Web Designer", "doc_count" : 2 }, { "key" : "Dev Manager", "doc_count" : 1 }, { "key" : "Product Manager", "doc_count" : 1 } ] } } }
Post_Filter
-
是对聚合分析后的⽂档进⾏再次过滤
-
Size ⽆需设置为 0
使⽤场景
- ⼀条语句,获取聚合信息 + 获取符 合条件的⽂档
一条语句,找出所有的job分组。还能找到job为 dev manager的所有数据
POST employees/_search { "aggs": { "jobs": { "terms": { "field": "job.keyword" } } }, "post_filter": { "match": { "job.keyword": "Dev Manager" } } }
Global
- ⽆视 query,对全部⽂档进⾏统计
POST employees/_search { "size": 0, "query": { "range": { "age": { "gte": 40 } } }, "aggs": { "jobs": { "terms": { "field": "job.keyword" } }, "all": { "global": {}, "aggs": { "salary_avg": { "avg": { "field": "salary" } } } } } }
排序
指定 order, 按照 count 和 key 进⾏排序
-
默认情况,按照 count 降序排序
-
指定 size,就能返回相应的桶
POST employees/_search { "size": 0, "query": { "range": { "age": { "gte": 20 } } }, "aggs": { "jobs": { "terms": { "field": "job.keyword", "order": [ { "_count": "asc" }, { "_key": "desc" } ] } } } }
基于⼦聚合的值排序
-
基于⼦聚合的数值进⾏排序
-
使⽤⼦聚合,Aggregation name
POST employees/_search { "size": 0, "aggs": { "jobs": { "terms": { "field":"job.keyword", "order":[ { "stats_salary.min":"desc" }] }, "aggs": { "stats_salary": { "stats": { "field":"salary" } } } } } }
聚合的精准度问题
Terms Aggregation 的返回值
如何解决 Terms 不准的问题:提升 shard_size 的参数
Terms 聚合分析不准的原因,数据分散在多个分 ⽚上, Coordinating Node ⽆法获取数据全貌
解决⽅案
-
1:当数据量不⼤时,设置 Primary Shard 为 1;实现准确性
-
2:在分布式数据上,设置 shard_size 参 数,提⾼精确度 ,原理:每次从 Shard 上额外多获取数据,提升准 确率
调整 shard size ⼤⼩,降低 doc_count_error_upper_bound 来提升准确度 , 增加整体计算量,提⾼了准确度,但会降低相应时间
Shard Size 默认⼤⼩设定
-
shard size = size *1.5 +10
-
https://www.elastic.co/guide/en/elasticsearch/reference/7.2/search-aggregations-bucket-terms-aggregation.html
例子
GET my_flights/_search { "size": 0, "aggs": { "weather": { "terms": { "field":"OriginWeather", "size":1, "shard_size":10, "show_term_doc_count_error":true } } } }
Composite 聚合—— 多条件聚合后分页实现
POST legislation/_search { "size": 0, "query": { "term": { "source_type": { "value": "migrate" } } }, "aggs": { "legislation": { "composite": { "sources": [ { "norm_citation": { "terms": { "field": "norm_citation" } } }, { "designator": { "terms": { "field": "designator.keyword" } } } ], "size": 10 } } } }
下一页
POST legislation/_search { "size": 0, "query": { "term": { "source_type": { "value": "migrate" } } }, "aggs": { "legislation": { "composite": { "sources": [ { "norm_citation": { "terms": { "field": "norm_citation" } } }, { "designator": { "terms": { "field": "designator.keyword" } } } ], "size": 10, "after": { "norm_citation": "1890_39a", "designator": "section-15" } } } } }