poj 2553 The Bottom of a Graph(强连通分量+缩点)

题目地址:http://poj.org/problem?id=2553

The Bottom of a Graph
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 7881   Accepted: 3263

Description

We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph.  Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1).  Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e.,bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

Input

The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

Output

For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

Sample Input

3 3
1 3 2 3 3 1
2 1
1 2
0

Sample Output

1 3
2

Source

 
【题解】:
  找到入度为0的所有强连通分量,将其中的点排序后输出
  这题跟poj 2186 很类似
  
【code】:
  
  1 /**
  2 Judge Status:Accepted      Memory:1488K
  3 Time:125MS      Language:G++
  4 Code Length:2443B   Author:cj
  5 */
  6 #include<iostream>
  7 #include<stdio.h>
  8 #include<string.h>
  9 #include<stack>
 10 #include<vector>
 11 #include<algorithm>
 12 
 13 #define N 10010
 14 using namespace std;
 15 
 16 vector<int> G[N];
 17 stack<int> stk;
 18 int pre[N],lowlink[N],sccno[N],scc_cnt,dfn_clock,out[N],counter[N];
 19 
 20 
 21 void DFN(int u)  //tarjan算法
 22 {
 23     lowlink[u] = pre[u] = ++dfn_clock;
 24     stk.push(u);
 25     int i;
 26     for(i=0;i<G[u].size();i++)
 27     {
 28         int v = G[u][i];
 29         if(!pre[v])
 30         {
 31             DFN(v);
 32             lowlink[u] = min(lowlink[u],lowlink[v]);
 33         }
 34         else if(!sccno[v])
 35         {
 36             lowlink[u] = min(lowlink[u],pre[v]);
 37         }
 38     }
 39     if(lowlink[u]==pre[u])
 40     {
 41         scc_cnt++;  //强连通图的个数标记
 42         while(1)
 43         {
 44             int x = stk.top();
 45             stk.pop();
 46             sccno[x] = scc_cnt;
 47             if(x==u)    break;
 48         }
 49     }
 50 }
 51 
 52 void findscc(int n)
 53 {
 54     int i;
 55     scc_cnt = dfn_clock = 0;
 56     memset(pre,0,sizeof(pre));
 57     memset(lowlink,0,sizeof(lowlink));
 58     memset(sccno,0,sizeof(sccno));
 59     for(i=1;i<=n;i++)
 60         if(!pre[i])
 61             DFN(i);
 62 }
 63 
 64 int main()
 65 {
 66     int n,m;
 67     while(~scanf("%d",&n)&&n)
 68     {
 69         scanf("%d",&m);
 70         int i;
 71         for(i=1;i<=n;i++)
 72             G[i].clear();
 73         for(i=0;i<m;i++)
 74         {
 75             int a,b;
 76             scanf("%d%d",&a,&b);
 77             G[a].push_back(b);  // 得到图
 78         }
 79         findscc(n);  //查找强连通图
 80         int j;
 81         memset(out,0,sizeof(out));
 82         memset(counter,0,sizeof(counter));
 83 
 84         for(i=1;i<=n;i++)  //遍历一边图,查找统计个点缩点后的出度
 85         {
 86             for(j=0;j<G[i].size();j++)
 87             {
 88                 int v = G[i][j];
 89                 if(sccno[i]!=sccno[v])
 90                 {
 91                     out[sccno[i]]++;  //出度
 92                 }
 93             }
 94         }
 95         for(i=1;i<=scc_cnt;i++)
 96         {
 97             if(!out[i])  //出度为0的强连通分量
 98             {
 99                 counter[i] = 1;  //标记
100             }
101         }
102 
103         int pl = 0;
104         for(i=1;i<=n;i++)
105             if(counter[sccno[i]])  //是否被标记,从下到大
106             {
107                 if(pl)  printf(" %d",i);
108                 else printf("%d",i);
109                 pl = 1;
110             }
111         putchar(10);
112     }
113     return 0;
114 }

 

 

posted @ 2013-08-10 18:00  crazy_apple  阅读(256)  评论(0编辑  收藏  举报