素数 + 背包 - SGU 116. Index of super-prime
Index of super-prime
Problem's Link
Mean:
如果一个素数所在的位置还是素数,那么这个素数就是超级素数,比如3在第2位置,那么3就是超级素数.
现在给你一个数,求出来这个数由最少的超级素数的和组成,输出这个超级素数.
analyse:
很简单的完全背包,不需要二进制压缩,也不必考虑容量.
Time complexity: O(N)
view code
/**
* -----------------------------------------------------------------
* Copyright (c) 2016 crazyacking.All rights reserved.
* -----------------------------------------------------------------
* Author: crazyacking
* Date : 2016-01-08-10.51
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long(LL);
typedef unsigned long long(ULL);
const double eps(1e-8);
#define REP( i, n ) \
for ( int i = 0; i < (n); i++ )
#define FOR( i, b, e ) \
for ( int i = (b); i <= (e); i++ )
const int
MAXN = 10001,
oo = (int)1e9;
int N;
int cant;
int from[MAXN];
int best[MAXN];
vector< int > SP;
int prime( int x )
{
if ( x < 2 ) return false;
if ( x == 2 || x == 3 )
return true;
if ( x % 2 == 0 || x % 3 == 0 )
return false;
for ( int i = 6; (i-1) * (i-1) <= x; i += 6 )
if ( x % (i - 1) == 0 || x % (i + 1) == 0)
return false;
return true;
}
int main()
{
scanf( "%d", &N );
FOR( i, 2, N )
if ( prime( i ) )
{
cant++;
if ( prime( cant ) )
SP.push_back( i );
}
//printf( "%d\n", SP.size() );
fill( best, best + N + 1, oo );
best[0] = 0;
REP( i, SP.size() )
{
int val = SP[i];
FOR( j, val, N )
if ( best[j - val] + 1 < best[j] )
{
best[j] = best[j - val] + 1;
from[j] = i;
}
}
if ( best[N] == oo )
printf( "0\n" );
else
{
printf( "%d\n", best[N] );
int val = N;
while ( val > 0 )
{
printf( "%d ", SP[ from[val] ] );
val -= SP[ from[val] ];
}
printf( "\n" );
}
return 0;
}
* -----------------------------------------------------------------
* Copyright (c) 2016 crazyacking.All rights reserved.
* -----------------------------------------------------------------
* Author: crazyacking
* Date : 2016-01-08-10.51
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long(LL);
typedef unsigned long long(ULL);
const double eps(1e-8);
#define REP( i, n ) \
for ( int i = 0; i < (n); i++ )
#define FOR( i, b, e ) \
for ( int i = (b); i <= (e); i++ )
const int
MAXN = 10001,
oo = (int)1e9;
int N;
int cant;
int from[MAXN];
int best[MAXN];
vector< int > SP;
int prime( int x )
{
if ( x < 2 ) return false;
if ( x == 2 || x == 3 )
return true;
if ( x % 2 == 0 || x % 3 == 0 )
return false;
for ( int i = 6; (i-1) * (i-1) <= x; i += 6 )
if ( x % (i - 1) == 0 || x % (i + 1) == 0)
return false;
return true;
}
int main()
{
scanf( "%d", &N );
FOR( i, 2, N )
if ( prime( i ) )
{
cant++;
if ( prime( cant ) )
SP.push_back( i );
}
//printf( "%d\n", SP.size() );
fill( best, best + N + 1, oo );
best[0] = 0;
REP( i, SP.size() )
{
int val = SP[i];
FOR( j, val, N )
if ( best[j - val] + 1 < best[j] )
{
best[j] = best[j - val] + 1;
from[j] = i;
}
}
if ( best[N] == oo )
printf( "0\n" );
else
{
printf( "%d\n", best[N] );
int val = N;
while ( val > 0 )
{
printf( "%d ", SP[ from[val] ] );
val -= SP[ from[val] ];
}
printf( "\n" );
}
return 0;
}