组合数学 - BZOJ 3997 - TJOI2015
TJOI2015
Problem's Link
----------------------------------------------------------------------------
Mean:
N×M的网格,一开始在(1,1)每次可以向下和向右走,每经过一个有数字的点最多能将数字减1,最终走到(N,M).
问至少要走多少次才能将数字全部变为0 (N,M<=1000,ai,j<=106)
analyse:
结论题.
设d(i,j)
d(i,j)=max(d(i−1,j),d(i,j+1),d(i−1,j+1))+a[i,j]
答案是d(n,1)
Time complexity: O(N)
view code
/**
* -----------------------------------------------------------------
* Copyright (c) 2016 crazyacking.All rights reserved.
* -----------------------------------------------------------------
* Author: crazyacking
* Date : 2016-02-15-13.19
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long(LL);
typedef unsigned long long(ULL);
const double eps(1e-8);
typedef long long ll;
ll d[1005][1005];
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int n, m;
scanf("%d%d", &n, &m);
for(int i=1; i<=n; ++i)
{
for(int j=1; j<=m; ++j)
{
scanf("%lld", &d[i][j]);
}
}
for(int i=1; i<=n; ++i)
{
for(int j=m; j>=1; --j)
{
d[i][j]=max(d[i][j]+d[i-1][j+1], max(d[i][j+1], d[i-1][j]));
}
}
printf("%lld\n", d[n][1]);
}
return 0;
* -----------------------------------------------------------------
* Copyright (c) 2016 crazyacking.All rights reserved.
* -----------------------------------------------------------------
* Author: crazyacking
* Date : 2016-02-15-13.19
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long(LL);
typedef unsigned long long(ULL);
const double eps(1e-8);
typedef long long ll;
ll d[1005][1005];
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int n, m;
scanf("%d%d", &n, &m);
for(int i=1; i<=n; ++i)
{
for(int j=1; j<=m; ++j)
{
scanf("%lld", &d[i][j]);
}
}
for(int i=1; i<=n; ++i)
{
for(int j=m; j>=1; --j)
{
d[i][j]=max(d[i][j]+d[i-1][j+1], max(d[i][j+1], d[i-1][j]));
}
}
printf("%lld\n", d[n][1]);
}
return 0;