Dinic
hdoj 1569 & hdoj 1565 方格取数
1. 最小点权覆盖集=最小割=最大流
2. 最大点权独立集=总权-最小点权覆盖集
将格子黑白染色,然后求最小割。
#include <iostream> #include <cstring> using namespace std; /*==================================================*\ | Dinic 最大流 O(V^2 * E) | INIT: ne=2; head[]置为0; addedge()加入所有弧; | CALL: flow(n, s, t); \*==================================================*/ //吉大模版 #define typec int // type of cost #define E 105005 #define N 2505 //const int N=2500; //const int E=300000; const typec inf = 0x3f3f3f3f; // max of cost struct edge { int x, y, nxt; typec c; } bf[E]; int ne, head[N], cur[N], ps[N], dep[N]; void addedge(int x, int y, typec c) { // add an arc(x -> y, c); vertex: 0 ~ n-1; bf[ne].x = x; bf[ne].y = y; bf[ne].c = c; bf[ne].nxt = head[x]; head[x] = ne++; bf[ne].x = y; bf[ne].y = x; bf[ne].c = 0; bf[ne].nxt = head[y]; head[y] = ne++; } typec flow(int n, int s, int t) { typec tr, res = 0; int i, j, k, f, r, top; while (1) { memset(dep, -1, n * sizeof(int)); for (f = dep[ps[0] = s] = 0, r = 1; f != r; ) for (i = ps[f++], j = head[i]; j; j = bf[j].nxt) { if (bf[j].c && -1 == dep[k = bf[j].y]){ dep[k] = dep[i] + 1; ps[r++] = k; if (k == t) { f = r; break; } } } if (-1 == dep[t]) break; memcpy(cur, head, n * sizeof(int)); for (i = s, top = 0; ; ) { if (i == t) { for (k = 0, tr = inf; k < top; ++k) if (bf[ps[k]].c < tr) tr = bf[ps[f = k]].c; for (k = 0; k < top; ++k) bf[ps[k]].c -= tr, bf[ps[k]^1].c += tr; res += tr; i = bf[ps[top = f]].x; } for (j=cur[i]; cur[i]; j = cur[i] = bf[cur[i]].nxt) if (bf[j].c && dep[i]+1 == dep[bf[j].y]) break; if (cur[i]) { ps[top++] = cur[i]; i = bf[cur[i]].y; } else { if (0 == top) break; dep[i] = -1; i = bf[ps[--top]].x; } } } return res; } int main() { // freopen( "c:/aaa.txt", "r", stdin ); int i, j, k, a, s, t, n, m, x, y, sum; int dir[4][2] = { 0, 1, 1, 0 , 0, -1, -1, 0 }; while( scanf( "%d", &n) == 1 ) { m = n; ne = 2; memset( head, 0, sizeof(head) ); s = n * m; t = s + 1; sum = 0; for( i=0; i<n; ++i ) { for( j=0; j<m; ++j ) { scanf( "%d", &a ); sum += a; if( (i+j)%2 == 0 ) { addedge( s, i*m+j, a ); for( k=0; k<4; ++k ) { x = i + dir[k][0]; y = j + dir[k][1]; if( x < 0 || y < 0 || x >= n || y >= m ) continue; addedge( i*m+j, x*m+y, inf ); } } else { addedge( i*m+j, t, a ); } } } int rec = flow(n*m+2, s, t); printf( "%d\n", sum - rec); } return 0; }
.