Loading

3D 点云数据集整理分析

3D 点云数据集整理分析

1. 参考文章

1.1. PU-Net

Since there are no public benchmarks for point cloud upsampling, we collect a dataset of 60 different models from the Visionair repository. ... We randomly select 40 for training, and use the rest for testing.

训练数据集:Visionair repository.OFF

测试数据集:ModelNet40.OFFShapeNet.PTS

1.2. EAR

vcg 版本算法实现中,读取的是 PLY 文件。且 PLY 文件中 edge、face 数量为 0。

CGAL 版本算法实现中,可读取多种格式。

程序可处理的数据格式:

2. 数据集简介

2.1 Visionair repository

数据格式:.OFF

数据特点:点云规整,质量较高

部分样例:

Visionair repository

2.2 ModelNet

数据格式:.OFF

数据特点:结构简单,不适合做点云数据集,模型结构更多通过边来体现

部分样例:

modelnet

2.3 ShapeNet

This dataset provides part segmentation to a subset of ShapeNetCore models, containing ~16K models from 16 shape categories. The number of parts for each category varies from 2 to 6 and there are a total number of 50 parts.

数据格式:.PTS

数据特点:纯点集,有类型标注,点云较为稀疏

部分样例:

shapenetcore

References

posted @ 2020-05-02 21:00  CrayonSea  阅读(3313)  评论(2编辑  收藏  举报