「CF1295F」 Good Contest

题目

点这里看题目。

分析

初看似乎只能想到一个暴躁的 DP:

\(f_{i,j}\):前 \(i\) 个数,最后一个数是 \(j\) 的序列方案数。

...... 嗯,显然会 TLE。

不过,由于总共的区间数很少,所以由区间的端点组合的区间会很少。我们可以从这个方向入手压缩状态。

考虑将原先的闭区间 \([l_i,r_i]\) 转为开区间 \([l'_i,r'_i)\)。然后将所有的 \(l'_i\)\(r'_i\) 拿出来排序并去重,得到了序列 \(P\)。并记 \(I_j=[P_{j},P_{j+1})\)。我们于是可以考虑重新定义状态:

\(f_{i,j}\):前 \(i\) 个数,最后一个数落在了 \(I_j\) 中的方案数。

转移时我们可以考虑枚举属于 \(I_j\) 的数的范围。同一个区间中选取出不增序列的方案数可以隔板法计算,本质上求出 \([l,r)\) 中随便选出 \(c\) 个数组成不增子序列等价于\([l,r)\) 中随便选出 \(c\) 个数,也即是 \(\binom{r-l+c-1}{c}\)。具体写出来就长这个样子:

\[f_{i,j}=\sum_{k=0}^{i-1}[\forall k<p\le i,I_j\subset [l_p,r_p]]\sum_{j<t}f_{k,t}\binom{|I_j|+i-k-1}{i-k} \]

最终的答案就是 \(\sum_{j}f_{n,j}\) 除以总的序列数。

实际转移的时候,我们可以在发现 \([\forall k<p\le i,I_{j}\subset[l_p,r_p]]= 0\) 时直接跳出。后面的 \(\sum_{j<t} f_{k,t}\) 可以运用后缀和优化。 \(\binom{|I_j|+i-k}{i-k}\) 需要 \(O(n)\) 单独计算。

因此转移的时间复杂度是 \(O(n^4)\)

小结:

  1. 第二维状态表示区间而非某个数,以此压缩了状态,比较有意义。
  2. 计算确定区间内合法序列个数的转化,比较有意义。

代码

#include <cstdio>
#include <algorithm>
using namespace std;

typedef long long LL;

const int mod = 998244353;
const int MAXN = 105;

template<typename _T>
void read( _T &x )
{
	x = 0; char s = getchar(); int f = 1;
	while( s < '0' || '9' < s ) { f = 1; if( s == '-' ) f = -1; s = getchar(); }
	while( '0' <= s && s <= '9' ) { x = ( x << 3 ) + ( x << 1 ) + ( s - '0' ); s = getchar(); }
	x *= f;
}

template<typename _T>
void write( _T x )
{
	if( x < 0 ) putchar( '-' ), x = -x;
	if( 9 < x ) write( x / 10 );
	putchar( x % 10 + '0' );
}

template<typename _T>
_T MAX( const _T a, const _T b )
{
	return a > b ? a : b;
}

template<typename _T>
_T MIN( const _T a, const _T b )
{
	return a < b ? a : b;
}

int f[MAXN][MAXN];
int l[MAXN], r[MAXN], pnt[MAXN << 1];
int lef[MAXN], rig[MAXN];
int N;

int Qkpow( int base, int indx );
int Inv( const int a ) { return Qkpow( a, mod - 2 ); }
int Mul( LL x, int v ) { x *= v; if( x >= mod ) x %= mod; return x; }
int Add( int x, int v ) { return x + v >= mod ? x + v - mod : x + v; }

int Qkpow( int base, int indx )
{
	int ret = 1;
	while( indx )
	{
		if( indx & 1 ) ret = Mul( ret, base );
		base = Mul( base, base ), indx >>= 1;
	}
	return ret;
}

int C( const int n, const int m )
{
	if( n < m ) return 0; int ret = 1;
	for( int i = 1 ; i <= m ; i ++ ) 
		ret = Mul( ret, Mul( n - i + 1, Inv( i ) ) );
	return ret;
}

int main()
{
	read( N ); int tot = 0;
	for( int i = 1 ; i <= N ; i ++ ) read( l[i] ), read( r[i] );
	for( int i = 1 ; i <= N ; i ++ ) pnt[++ tot] = l[i], pnt[++ tot] = r[i] + 1;
	sort( pnt + 1, pnt + 1 + tot );
	tot = unique( pnt + 1, pnt + 1 + tot ) - pnt - 1;
	for( int i = 1 ; i <= N ; i ++ ) 
		lef[i] = lower_bound( pnt + 1, pnt + 1 + tot, l[i] ) - pnt,
		rig[i] = lower_bound( pnt + 1, pnt + 1 + tot, r[i] + 1 ) - pnt;
	
	int ans = 0, L;
	lef[0] = 1, rig[0] = tot + 1;
	for( int i = 1 ; i <= tot ; i ++ ) f[0][i] = 1;
	for( int i = 1 ; i <= N ; i ++ )
	{
		for( int j = lef[i] ; j < rig[i] ; j ++ )
		{
			L = pnt[j + 1] - pnt[j];
			for( int k = i ; k ; k -- )
			{
				if( j < lef[k] || rig[k] <= j ) break;
				f[i][j] = Add( f[i][j], Mul( f[k - 1][j + 1], C( i - k + L, i - k + 1 ) ) );
			}
		}
		for( int j = tot - 1 ; j ; j -- )
			f[i][j] = Add( f[i][j + 1], f[i][j] );
	}
	ans = f[N][1];
	for( int i = 1 ; i <= N ; i ++ )
		ans = Mul( ans, Inv( r[i] - l[i] + 1 ) );
	write( ans ), putchar( '\n' );
	return 0;
}
posted @ 2020-10-16 14:49  crashed  阅读(107)  评论(0编辑  收藏  举报