map 和reduce

map()函数接收两个参数,一个是函数,一个是Iterablemap将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。

举例说明,比如我们有一个函数f(x)=x2,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map()实现如下:

            f(x) = x * x

                  │
                  │
  ┌───┬───┬───┬───┼───┬───┬───┬───┐
  │   │   │   │   │   │   │   │   │
  ▼   ▼   ▼   ▼   ▼   ▼   ▼   ▼   ▼

[ 1   2   3   4   5   6   7   8   9 ]

  │   │   │   │   │   │   │   │   │
  │   │   │   │   │   │   │   │   │
  ▼   ▼   ▼   ▼   ▼   ▼   ▼   ▼   ▼

[ 1   4   9  16  25  36  49  64  81 ]

现在,我们用Python代码实现:

>>> def f(x):
...     return x * x
...
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]

map()传入的第一个参数是f,即函数对象本身。由于结果r是一个IteratorIterator是惰性序列,因此通过list()函数让它把整个序列都计算出来并返回一个list。

 

reduce把一个函数作用在一个序列[x1, x2, x3, ...]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:

reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)

比方说对一个序列求和,就可以用reduce实现:

>>> from functools import reduce
>>> def add(x, y):
...     return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25
posted @ 2018-05-10 16:31  Cranx  阅读(111)  评论(0编辑  收藏  举报