HDU 4430 Yukari's Birthday

Yukari's Birthday

Time Limit: 6000ms
Memory Limit: 32768KB
This problem will be judged on HDU. Original ID: 4430
64-bit integer IO format: %I64d      Java class name: Main
 
Today is Yukari's n-th birthday. Ran and Chen hold a celebration party for her. Now comes the most important part, birthday cake! But it's a big challenge for them to place n candles on the top of the cake. As Yukari has lived for such a long long time, though she herself insists that she is a 17-year-old girl.
To make the birthday cake look more beautiful, Ran and Chen decide to place them like r ≥ 1 concentric circles. They place ki candles equidistantly on the i-th circle, where k ≥ 2, 1 ≤ i ≤ r. And it's optional to place at most one candle at the center of the cake. In case that there are a lot of different pairs of r and k satisfying these restrictions, they want to minimize r × k. If there is still a tie, minimize r.
 

Input

There are about 10,000 test cases. Process to the end of file.
Each test consists of only an integer 18 ≤ n ≤ 1012.
 

Output

For each test case, output r and k.
 

Sample Input

18
111
1111

Sample Output

1 17
2 10
3 10

Source

 
解题:二分。根据等比数列,可知x(1-xn) = k*(1-x)
 
n的范围比较小,枚举n再二分x即可。
 
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 #include <climits>
 7 #include <vector>
 8 #include <queue>
 9 #include <cstdlib>
10 #include <string>
11 #include <set>
12 #include <stack>
13 #define LL long long
14 #define pii pair<int,int>
15 #define INF 0x3f3f3f3f
16 using namespace std;
17 LL mypow(LL x,LL y){
18     LL ans = 1;
19     while(y){
20         if(y&1) ans *= x;
21         y >>= 1;
22         x *= x;
23     }
24     return ans;
25 }
26 int main() {
27     LL n,r,k,lt,rt,mid;
28     while(~scanf("%I64d",&n)){
29         r = 1;
30         k = n-1;
31         for(int i = 2; i <= 41; i++){
32             lt = 2;
33             rt = (LL)pow(n,1.0/i);
34             while(lt <= rt){
35                 mid = (lt+rt)>>1;
36                 LL sum = (mid-mypow(mid,i+1))/(1-mid);
37                 if(sum == n||sum == n-1){
38                     if(i*mid < r*k){
39                         r = i;
40                         k = mid;
41                     }
42                     break;
43                 }else if(sum < n) lt = mid+1;
44                 else rt = mid-1;
45             }
46         }
47         printf("%I64d %I64d\n",r,k);
48     }
49     return 0;
50 }
View Code

 

posted @ 2014-09-06 19:22  狂徒归来  阅读(180)  评论(0编辑  收藏  举报