POJ 3169 Layout

Layout

Time Limit: 1000ms
Memory Limit: 65536KB
This problem will be judged on PKU. Original ID: 3169
64-bit integer IO format: %lld      Java class name: Main
 
Like everyone else, cows like to stand close to their friends when queuing for feed.  FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.
 

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
 

Output

Line 1: A single integer. If no line-up is possible, output -1.  If cows 1 and N can be arbitrarily far apart, output -2.  Otherwise output the greatest possible distance between cows 1 and N.
 

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Source

 
解题:差分约束
 
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 #include <climits>
 7 #include <vector>
 8 #include <queue>
 9 #include <cstdlib>
10 #include <string>
11 #include <set>
12 #include <stack>
13 #define LL long long
14 #define pii pair<int,int>
15 #define INF 0x3f3f3f3f
16 using namespace std;
17 const int maxn = 1010;
18 struct arc{
19     int to,w;
20     arc(int x = 0,int y = 0){
21         to = x;
22         w = y;
23     }
24 };
25 vector<arc>g[maxn];
26 queue<int>q;
27 int d[maxn],cnt[maxn],N,ML,MD;
28 bool used[maxn];
29 void spfa(){
30     for(int i = 1; i <= N; i++){
31         d[i] = INF;
32         cnt[i] = 0;
33         used[i] = false;
34     }
35     d[1] = 0;
36     used[1] = true;
37     q.push(1);
38     while(!q.empty()){
39         int u = q.front();
40         q.pop();
41         used[u] = false;
42         for(int i = 0; i < g[u].size(); i++){
43             if(d[g[u][i].to] > d[u] + g[u][i].w){
44                 d[g[u][i].to] = d[u] + g[u][i].w;
45                 if(!used[g[u][i].to]){
46                     q.push(g[u][i].to);
47                     used[g[u][i].to] = true;
48                     cnt[g[u][i].to]++;
49                     if(cnt[g[u][i].to] > N){
50                         puts("-1");
51                         return;
52                     }
53                 }
54             }
55         }
56     }
57     if(d[N] == INF) puts("-2");
58     else printf("%d\n",d[N]);
59 }
60 int main(){
61     int i,u,v,w;
62     while(~scanf("%d %d %d",&N,&ML,&MD)){
63         for(i = 0; i <= N; i++) g[i].clear();
64         for(i = 0; i < ML; i++){
65             scanf("%d %d %d",&u,&v,&w);
66             g[u].push_back(arc(v,w));
67         }
68         for(i = 0; i < MD; i++){
69             scanf("%d %d %d",&u,&v,&w);
70             g[v].push_back(arc(u,-w));
71         }
72         for(i = 1; i < N; i++)
73             g[i+1].push_back(arc(i,0));
74         spfa();
75     }
76     return 0;
77 }
View Code

 

posted @ 2014-09-05 22:57  狂徒归来  阅读(170)  评论(0编辑  收藏  举报