HDU 4576 Robot

Robot

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
Total Submission(s): 2776    Accepted Submission(s): 948


Problem Description
Michael has a telecontrol robot. One day he put the robot on a loop with n cells. The cells are numbered from 1 to n clockwise.



At first the robot is in cell 1. Then Michael uses a remote control to send m commands to the robot. A command will make the robot walk some distance. Unfortunately the direction part on the remote control is broken, so for every command the robot will chose a direction(clockwise or anticlockwise) randomly with equal possibility, and then walk w cells forward.
Michael wants to know the possibility of the robot stopping in the cell that cell number >= l and <= r after m commands.
 

 

Input
There are multiple test cases. 
Each test case contains several lines.
The first line contains four integers: above mentioned n(1≤n≤200) ,m(0≤m≤1,000,000),l,r(1≤l≤r≤n).
Then m lines follow, each representing a command. A command is a integer w(1≤w≤100) representing the cell length the robot will walk for this command.  
The input end with n=0,m=0,l=0,r=0. You should not process this test case.
 

 

Output
For each test case in the input, you should output a line with the expected possibility. Output should be round to 4 digits after decimal points.
 

 

Sample Input
 
3 1 1 2
1
5 2 4 4
1
2
0 0 0 0
 

 

Sample Output
0.5000
0.2500
 

 

Source
 

 解题:dp。。。

 

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 #include <climits>
 7 #include <vector>
 8 #include <queue>
 9 #include <cstdlib>
10 #include <string>
11 #include <set>
12 #include <stack>
13 #define LL long long
14 #define pii pair<int,int>
15 #define INF 0x3f3f3f3f
16 using namespace std;
17 double dp[2][210];
18 int main() {
19     int n,m,l,r,tmp,i,cur;
20     double ans = 0.0;
21     while(scanf("%d %d %d %d",&n,&m,&l,&r),n||m||l||r){
22         dp[0][0] = 1;
23         for(int i = 1; i < n; i++) dp[0][i] = 0;
24         cur = 0;
25         while(m--){
26             scanf("%d",&tmp);
27             for(i = 0; i < n; i++)
28                 dp[cur^1][i] = 0.5*dp[cur][(i-tmp+n)%n] + 0.5*dp[cur][(i+tmp)%n];
29             cur ^= 1;
30         }
31         ans = 0;
32         for(i = l-1; i < r; i++)
33             ans += dp[cur][i];
34         printf("%.4f\n",ans);
35     }
36     return 0;
37 }
View Code

 

posted @ 2014-09-01 12:46  狂徒归来  阅读(221)  评论(0编辑  收藏  举报