P6327 区间加区间sin和
P6327 区间加区间sin和 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
考虑
\[\sin (\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta\\
\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta
\]
所以
\[\sin(a + v) + \sin(b + v) + \sin(c + v) = \cos v(\sin a + \sin b + \sin c) + \sin v(\cos a + \cos b + \cos c)\\
\cos(a + v) + \cos(b + v) + \cos(c + v) = \cos v(\cos a + \cos b + \cos c) - \sin v(\sin a + \sin b + \sin c)
\]
令 \(s\) 表示 \(\sin\) 和,\(c\) 表示 \(\cos\) 和,那么对于每一次更新有:
\(s \gets s\cos v + c\sin v\),\(c \gets c \cos v - s \sin v\)。
然后就可以直接线段树维护了。
有个坑:懒标记需要开 long long。
/*
* @Author: crab-in-the-northeast
* @Date: 2023-01-03 11:17:34
* @Last Modified by: crab-in-the-northeast
* @Last Modified time: 2023-01-03 11:56:55
*/
#include <bits/stdc++.h>
#define int long long
inline int read() {
int x = 0;
bool f = true;
char ch = getchar();
for (; !isdigit(ch); ch = getchar())
if (ch == '-')
f = false;
for (; isdigit(ch); ch = getchar())
x = (x << 1) + (x << 3) + ch - '0';
return f ? x : (~(x - 1));
}
inline int ls(int p) {
return p << 1;
}
inline int rs(int p) {
return p << 1 | 1;
}
const int maxn = (int)2e5 + 5;
double si[maxn << 2], co[maxn << 2];
int der[maxn << 2];
inline void up(int p) {
si[p] = si[ls(p)] + si[rs(p)];
co[p] = co[ls(p)] + co[rs(p)];
}
inline void build(int p, int l, int r) {
if (l == r) {
int x = read();
si[p] = sin(x);
co[p] = cos(x);
return ;
}
int mid = (l + r) >> 1;
build(ls(p), l, mid);
build(rs(p), mid + 1, r);
up(p);
}
inline void update(int p, int v) {
double s = si[p], c = co[p];
si[p] = s * cos(v) + c * sin(v);
co[p] = c * cos(v) - s * sin(v);
}
inline void down(int p) {
if (!der[p])
return ;
update(ls(p), der[p]);
update(rs(p), der[p]);
der[ls(p)] += der[p];
der[rs(p)] += der[p];
der[p] = 0;
}
double query(int p, int l, int r, int L, int R) {
if (L <= l && r <= R)
return si[p];
down(p);
int mid = (l + r) >> 1;
double ans = 0;
if (L <= mid)
ans = query(ls(p), l, mid, L, R);
if (R > mid)
ans += query(rs(p), mid + 1, r, L, R);
return ans;
}
void add(int p, int l, int r, int L, int R, int v) {
if (L <= l && r <= R) {
update(p, v);
der[p] += v;
return ;
}
down(p);
int mid = (l + r) >> 1;
if (L <= mid)
add(ls(p), l, mid, L, R, v);
if (R > mid)
add(rs(p), mid + 1, r, L, R, v);
up(p);
}
signed main() {
int n = read();
build(1, 1, n);
int m = read();
while (m--) {
int op = read(), l = read(), r = read();
if (op == 1) {
int v = read();
add(1, 1, n, l, r, v);
} else {
printf("%.1f\n", query(1, 1, n, l, r));
}
}
return 0;
}