P1198 JSOI2008 最大数
P1198 JSOI2008 最大数 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
采用 ST 表维护 RMQ。
对于插入操作,设插入后数列长度变为 \(n\),我们只需重新修改满足 \(i + 2^j - 1 = n\) 对应的 \(st[i][j]\)。这些区间总共有 \(\log n\) 个,所以复杂度是对的。
时间复杂度 \(\Theta(m \log m)\)。
/*
* @Author: crab-in-the-northeast
* @Date: 2022-12-30 02:37:44
* @Last Modified by: crab-in-the-northeast
* @Last Modified time: 2022-12-30 04:11:17
*/
#include <bits/stdc++.h>
inline int read() {
int x = 0;
bool f = true;
char ch = getchar();
for (; !isdigit(ch); ch = getchar())
if (ch == '-')
f = false;
for (; isdigit(ch); ch = getchar())
x = (x << 1) + (x << 3) + ch - '0';
return f ? x : (~(x - 1));
}
inline char rech() {
char ch = getchar();
while (!isgraph(ch))
ch = getchar();
return ch;
}
inline bool gmx(int &a, int b) {
return b > a ? a = b, true : false;
}
inline int max(int a, int b) {
return a > b ? a : b;
}
const int maxn = (int)2e5 + 5;
const int mlgn = 27;
int fmx[maxn][mlgn];
int lg[maxn];
int main() {
int m = read(), d = read(), n = 0, lst = 0;
lg[1] = 0;
for (int i = 2; i <= m; ++i)
lg[i] = lg[i >> 1] + 1;
while (m--) {
char op = rech();
int x = read();
if (op == 'A') {
(x += lst) %= d;
++n;
fmx[n][0] = x;
for (int j = 1; (1 << j) <= n; ++j) {
int i = n - (1 << j) + 1;
fmx[i][j] = max(fmx[i][j - 1], fmx[i + (1 << (j - 1))][j - 1]);
}
} else {
int l = n - x + 1, s = lg[x];
lst = max(fmx[l][s], fmx[n - (1 << s) + 1][s]);
printf("%d\n", lst);
}
}
return 0;
}