Python与RabbitMQ交互

RabbitMQ 消息队列

  成熟的中间件RabbitMQ、ZeroMQ、ActiveMQ等等

  RabbitMQ使用erlang语言开发,使用RabbitMQ前要安装erlang语言

  RabbitMQ允许不同应用、程序间交互数据

  python中的Threading queue只能允许单进程内多线程交互的

  python中的MultiProcessing queue只能允许父进程与子进程或同父进程的多个子进程交互


RabbitMQ启动:
  1.windows中默认安装成功,在服务列表中会显示自动启动
  2.Linux中使用命令rabbitmq-server start

RabbitMQ支持不同的语言,对于不同语言有相应的模块,这些模式支持使用开发语言连接RabbitMQ
Python连接RabbitMQ模块有:
  1.pika主流模块
  2.Celery分布式消息队列
  3.Haigha提供了一个简单的使用客户端库来与AMQP代理进行交互的方法


使用RabbitMQ前,首先阅读开始文档: http://www.rabbitmq.com/getstarted.html


简单的发送接收实例
  默认情况下,使用同一队列的进程,接收消息方使用轮询的方式,依次获取消息
  对于一条消息的接收来说,只有当接收方收到消息,并处理完消息,给RabbitMQ发送ack,队列中的消息才会删除
  如果在处理的过程中socket断开,那么消息自动转接到下一个接收方

 producer.py

__author__ = 'Cq'

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(
               'localhost'))

#声明一个管道
channel = connection.channel()

#声明queue,这个队列在RabbitMQ中生成,发送方和接收方使用同一个队列
channel.queue_declare(queue='hello2', durable=True)

#n RabbitMQ a message can never be sent directly to the queue, it always needs to go through an exchange.
channel.basic_publish(exchange='',
                      routing_key='hello2',#队列名称
                      body='Hello World!',
                      properties=pika.BasicProperties(
                         delivery_mode = 2, # make message persistent
                      )
                    )#body消息内容
print(" [x] Sent 'Hello World!'")
connection.close()
View Code

consumer.py

__author__ = 'Cq'

import pika
import time

connection = pika.BlockingConnection(pika.ConnectionParameters(
               'localhost'))
channel = connection.channel()


#You may ask why we declare the queue again ‒ we have already declared it in our previous code.
# We could avoid that if we were sure that the queue already exists. For example if send.py program
#was run before. But we're not yet sure which program to run first. In such cases it's a good
# practice to repeat declaring the queue in both programs.
#发送方和接收方不知道谁首先连接到RabbitMQ,双方连接上来都先声明一个队列
channel.queue_declare(queue='hello2', durable=True)

def callback(ch, method, properties, body):
    print("recived message...")
    # time.sleep(30)
    print(" [x] Received %r" % body)
    #处理完成消息后,主动要向RabbitMQ发送ack
    ch.basic_ack(delivery_tag=method.delivery_tag)
    #ch -->  管道内存对象的地址
    #method --> 指定各种参数
    #properties -->
    #python3 socket等发送网络包都是byte格式

#如果队列里还有1条消息未处理完,将不能接收新的消息
channel.basic_qos(prefetch_count=1)

#声明接收收消息变量
channel.basic_consume(callback,#收到消息后执行的回调函数
                      queue='hello2',)
                     #no_ack=True)#执行完callback函数后,默认会发送ack给RabbitMQ

print(' [*] Waiting for messages. To exit press CTRL+C')
#开始接收消息,不停循环接收,没有消息挂起等待
channel.start_consuming()
View Code

 

在RabbitMQ中查看当前队列数
  1.windows中查看队列
  在RabbitMQ安装目录下,sbin下有个管理工具rabbitmqctl.bat可以查看队列和队列中的消息数
  E:\RabbitMQ Server\rabbitmq_server-3.6.14\sbin>rabbitmqctl.bat list_queues
  Listing queues
  hello 1

 

 

消息持久化
如果当RabbitMQ服务器宕机了,不允许为处理的消息丢失时
  1.需要在声明队列时,声明为持久队列,只是队列持久化,消息未能持久化
    channel.queue_declare(queue='hello',durable=True)

  2.需要在发送端发送消息时声明
    channel.basic_publish(exchange='',
    routing_key='hello', #队列名称
    body='Hello World!', #body消息内容
    properties=pika.BasicProperties(
    delivery_mode = 2, # make message persistent
    #..这里可以添加附带参数,客户的通过回调函数的位置参数prop.参数名获取
    ))

消息处理配置
  对于不同性能的机器,处理消息量大小不同
  判断接收方消息队列里是否有未处理的消息,如果队列里还有1条消息未处理完,将不能接收新的消息
  channel.basic_qos(prefetch_count=1)

 

发送广播消息
  使用exchange,exchange的类型决定如果发送广播消息,它就是一个转发器
    类型:
      fanout: 所有bind到此exchange的queue都可以接收消息
      direct: 通过routingKey和exchange决定的那个唯一的queue可以接收消息
      topic:所有符合routingKey(此时可以是一个表达式)的routingKey所bind的queue可以接收消息
      headers: 通过headers 来决定把消息发给哪些queue


  fanout纯广播,只要bind到exchange的queue都能收到广播消息
    ☆发送的消息只广播发送一次
    channel.exchange_declare(exchange='log', type='fanout')
    channel.basic_publish(exchange='log',
    routing_key='',
    body=message)

  实例:

  fanout_producer.py

__author__ = 'Cq'
import pika
import sys

connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='logs',
                         exchange_type='fanout')

message = ' '.join(sys.argv[1:]) or "info: Hello World!"
channel.basic_publish(exchange='logs',
                      routing_key='',
                      body=message)
print(" [x] Sent %r" % message)
connection.close()
View Code

  fanout_consumer.py

__author__ = 'Cq'
import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='logs',
                         exchange_type='fanout')

#不指定queue名字,rabbit会随机分配一个名字,exclusive=True会在使用此queue的消费者断开后,自动将queue删除
#此queue名唯一,且只接收广播消息,当不需要接收时,能自动销毁
result = channel.queue_declare(exclusive=True)
#不需要queue名,只要绑定到转发器就能接收消息

queue_name = result.method.queue

channel.queue_bind(exchange='logs',
                   queue=queue_name)

print(' [*] Waiting for logs. To exit press CTRL+C')

def callback(ch, method, properties, body):
    print(" [x] %r" % body)

channel.basic_consume(callback,
                      queue=queue_name,
                      no_ack=True)

channel.start_consuming()
View Code

 

  topic过滤内容广播,队列只接收关心的消息

  实例:

  topic_producer.py

__author__ = 'Cq'

import pika
import sys

connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='topic_logs1',
                         exchange_type='topic')

#默认发送的消息格式为xxx.info
severity = sys.argv[1] if len(sys.argv) > 1 else 'test_message.info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(exchange='topic_logs1',
                      routing_key=severity,
                      body=message)
print(" [x] Sent %r:%r" % (severity, message))
View Code

  topic_consumer.py

__author__ = 'Cq'

import pika
import sys

connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='topic_logs1',
                         exchange_type='topic')

result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue

severities = sys.argv[1:]
if not severities:
    sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])
    sys.exit(1)

for severity in severities:
    channel.queue_bind(exchange='topic_logs1',
                       queue=queue_name,
                       routing_key=severity)

print(' [*] Waiting for logs. To exit press CTRL+C')

def callback(ch, method, properties, body):
    print(" [x] %r:%r" % (method.routing_key, body))

channel.basic_consume(callback,
                      queue=queue_name,
                      no_ack=True)

channel.start_consuming()
View Code

       过滤条件设置

To receive all the logs run:
python receive_logs_topic.py "#"

To receive all logs from the facility "kern":
python receive_logs_topic.py "kern.*"

Or if you want to hear only about "critical" logs:
python receive_logs_topic.py "*.critical"

You can create multiple bindings:
python receive_logs_topic.py "kern.*" "*.critical"

And to emit a log with a routing key "kern.critical" type:
python emit_log_topic.py "kern.critical" "A critical kernel error"
View Code
发送端
    python topic_producer.py xxx.info         messagexxxx
    python topic_producer.py xxx.warngin   messagexxxx
    python topic_producer.py xxx.error       messagexxxx

接收端
    python topic_consumer.py *.info
    python topic_consumer.py *.warngin
    python topic_consumer.py *.error
    python topic_consumer.py *.*
View Code

 

参考博客:http://www.cnblogs.com/alex3714/articles/5248247.html

posted @ 2017-12-20 18:16  前路~  阅读(2966)  评论(0编辑  收藏  举报