WebRTC 音频算法 附完整C代码

WebRTC提供一套音频处理引擎,

包含以下算法:

AGC自动增益控制(Automatic Gain Control)

ANS噪音抑制(Automatic Noise Suppression)

AEC是声学回声消除(Acoustic Echo Canceller for Mobile)

VAD是静音检测(Voice Activity Detection)

这是一套非常经典,以及值得细细品阅学习的音频算法资源。

在前面分享的博文,也有提及音频相关知识点。

一些算法优化的知识点,由于历史的原因,

WebRTC的实现已经不是当下最优的思路。

但也是非常经典的。

例如:

AGE算法中的WebRtcSpl_Sqrt  快速开平方的实现。

可以采用如下汇编函数替换之:

static float fast_sqrt(float x) {
    float s;
#if defined(__x86_64__)
    __asm__ __volatile__ ("sqrtss %1, %0" : "=x"(s) : "x"(x));
#elif defined(__i386__)
    s = x;
    __asm__ __volatile__ ("fsqrt" : "+t"(s));
#elif defined(__arm__) && defined(__VFP_FP__)
    __asm__ __volatile__ ("vsqrt.f32 %0, %1" : "=w"(s) : "w"(x));
#else
    s = sqrtf(x);
#endif
    return s;
}

现代很多cpu 汇编指令已经支持开平方的快速实现,

经过测试比对确实会比WebRtcSpl_Sqrt 快不少的。

关于开平方的快速实现,详情可以看下:

https://www.codeproject.com/Articles/69941/Best-Square-Root-Method-Algorithm-Function-Precisi

做算法优化的同学,就放过开平方吧。

每个算法有两个基本指标,

性能,效果。

WebRTC 着力于音频通信,所以它对性能的要求是极高的。

而算法的性能的优化,绝大多数情况的思路,都是特例化。

以前在公司开技术分享会的时候,也分享过。

也就一句话,越靠近CPU,性能越快。

也就是除非要不得以,请不要写到硬盘上,然后再读上来。

因为硬盘离CPU太远了。

所以优化的思路也就非常明显了。

从快到慢的介质分别是

CPU的寄存器 -> CPU的缓存 -> 内存空间 -> 硬盘空间(磁盘)

所以 尽可能地要使用上层的资源,能用寄存器就用寄存器,

能往CPU的资源上靠,就要把算法数据结构和资源做得更加紧凑。

关于CPU的相关资源:

https://www.cpuid.com/softwares/cpu-z.html

可以下一个CPU-Z 查看一下。

抽丝剥茧,一定要了解CPU的结构性能信息。

然后对症下药,尽可能符合CPU的口味。

 

科普下算法优化的思路:

1.尽可能多用局部变量,编写最短,最有效的闭合函数。

为了编译处理的时候,能最终用上寄存器,去缓存。

2.尽可能少调用函数,参数最好是指针或引用传递,这样能减少拷贝,

当然,可以的话参数要尽可能地少。

3.处理的数据尽可能紧凑且少,数据对齐很大程度上,

就是为了符合CPU的喜好,用上它的缓存。

4.尽可能顺序读写,也是为了用上缓存资源

5.计算降级,一般情况下乘法比加法耗时,除法比乘法耗时。

浮点比整形耗时。

所以将乘法降为加法,将除法降为乘法,浮点降为整形(定点化)。

这一条大多数朋友若是不清楚为什么,可以移步资源:

https://github.com/ARM-software/CMSIS_5

阅读其中的一些实现,你会找到具体原因的。

这里就不展开了。

6.能用内存的,就不要用磁盘,我想这个没必要多解释了。

7.当然如果能用特定算法思路数据接口进行优化也是可以的,例如查表之类的。

 

好像有点跑题了,回到主题上。

抽空把以上提及的几个算法整理成 

单文件实现的方式,并附加示例代码。

便于学习或者工程化之用。

 

相关项目地址:

https://github.com/cpuimage/WebRTC_AECM

https://github.com/cpuimage/WebRTC_NS

https://github.com/cpuimage/WebRTC_VAD

https://github.com/cpuimage/WebRTC_AGC

路漫漫其修远兮,一条道走到黑。

用cmake即可进行编译示例代码,详情见CMakeLists.txt。

 

若有其他相关问题或者需求也可以邮件联系俺探讨。

邮箱地址是: 
gaozhihan@vip.qq.com

posted @ 2018-05-01 15:15  cpuimage  阅读(8517)  评论(3编辑  收藏  举报