快速高斯模糊算法
刚才发现一份快速高斯模糊的实现。
源地址为:http://incubator.quasimondo.com/processing/gaussian_blur_1.php
作者信息为:
Fast Gaussian Blur v1.3 by Mario Klingemann <http://incubator.quasimondo.com>
processing源码: http://incubator.quasimondo.com/processing/fastblur.pde
效果图:
转为C语言实现版本。
代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | // Fast Gaussian Blur v1.3 // by Mario Klingemann <http://incubator.quasimondo.com> // C version updated and performance optimization by tntmonks(http://tntmonks.cnblogs.com) // One of my first steps with Processing. I am a fan // of blurring. Especially as you can use blurred images // as a base for other effects. So this is something I // might get back to in later experiments. // // What you see is an attempt to implement a Gaussian Blur algorithm // which is exact but fast. I think that this one should be // relatively fast because it uses a special trick by first // making a horizontal blur on the original image and afterwards // making a vertical blur on the pre-processed image. This // is a mathematical correct thing to do and reduces the // calculation a lot. // // In order to avoid the overhead of function calls I unrolled // the whole convolution routine in one method. This may not // look nice, but brings a huge performance boost. // // // v1.1: I replaced some multiplications by additions // and added aome minor pre-caclulations. // Also add correct rounding for float->int conversion // // v1.2: I completely got rid of all floating point calculations // and speeded up the whole process by using a // precalculated multiplication table. Unfortunately // a precalculated division table was becoming too // huge. But maybe there is some way to even speed // up the divisions. // // v1.3: Fixed a bug that caused blurs that start at y>0 // to go wrong. Thanks to Jeroen Schellekens for // finding it! void GaussianBlur(unsigned char * img, unsigned int x, unsigned int y, unsigned int w, unsigned int h, unsigned int comp, unsigned int radius) { unsigned int i, j ; radius = min(max(1, radius), 248); unsigned int kernelSize = 1 + radius * 2; unsigned int * kernel = (unsigned int *) malloc (kernelSize* sizeof (unsigned int )); memset (kernel, 0, kernelSize* sizeof (unsigned int )); unsigned int (*mult)[256] = (unsigned int (*)[256]) malloc (kernelSize * 256 * sizeof (unsigned int )); memset (mult, 0, kernelSize * 256 * sizeof (unsigned int )); unsigned int sum = 0; for (i = 1; i < radius; i++){ unsigned int szi = radius - i; kernel[radius + i] = kernel[szi] = szi*szi; sum += kernel[szi] + kernel[szi]; for (j = 0; j < 256; j++){ mult[radius + i][j] = mult[szi][j] = kernel[szi] * j; } } kernel[radius] = radius*radius; sum += kernel[radius]; for (j = 0; j < 256; j++){ mult[radius][j] = kernel[radius] * j; } unsigned int cr, cg, cb; unsigned int xl, yl, yi, ym, riw; unsigned int read, ri, p, n; unsigned int imgWidth = w; unsigned int imgHeight = h; unsigned int imageSize = imgWidth*imgHeight; unsigned char * rgb = (unsigned char *) malloc ( sizeof (unsigned char ) * imageSize * 3); unsigned char * r = rgb; unsigned char * g = rgb + imageSize; unsigned char * b = rgb + imageSize * 2; unsigned char * rgb2 = (unsigned char *) malloc ( sizeof (unsigned char ) * imageSize * 3); unsigned char * r2 = rgb2; unsigned char * g2 = rgb2 + imageSize; unsigned char * b2 = rgb2 + imageSize * 2; for ( size_t yh = 0; yh < imgHeight; ++yh) { for ( size_t xw = 0; xw < imgWidth; ++xw) { n = xw + yh* imgWidth; p = n*comp; r[n] = img[p]; g[n] = img[p + 1]; b[n] = img[p + 2]; } } x = max(0, x); y = max(0, y); w = x + w - max(0, (x + w) - imgWidth); h = y + h - max(0, (y + h) - imgHeight); yi = y*imgWidth; for (yl = y; yl < h; yl++){ for (xl = x; xl < w; xl++){ cb = cg = cr = sum = 0; ri = xl - radius; for (i = 0; i < kernelSize; i++){ read = ri + i; if (read >= x && read < w) { read += yi; cr += mult[i][r[read]]; cg += mult[i][g[read]]; cb += mult[i][b[read]]; sum += kernel[i]; } } ri = yi + xl; r2[ri] = cr / sum; g2[ri] = cg / sum; b2[ri] = cb / sum; } yi += imgWidth; } yi = y*imgWidth; for (yl = y; yl < h; yl++){ ym = yl - radius; riw = ym*imgWidth; for (xl = x; xl < w; xl++){ cb = cg = cr = sum = 0; ri = ym; read = xl + riw; for (i = 0; i < kernelSize; i++){ if (ri < h && ri >= y) { cr += mult[i][r2[read]]; cg += mult[i][g2[read]]; cb += mult[i][b2[read]]; sum += kernel[i]; } ri++; read += imgWidth; } p = (xl + yi)*comp; img[p] = (unsigned char )(cr / sum); img[p + 1] = (unsigned char )(cg / sum); img[p + 2] = (unsigned char )(cb / sum); } yi += imgWidth; } free (rgb); free (rgb2); free (kernel); free (mult); } |
该代码,将二维数组进一步优化后可提升一定的速度。
在博主机子上测试一张5000x3000的图像,模糊半径为10的情况下,耗时4s.
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧